[1] H. Kobayashi, A. Hayakawa, K.D.K.A. Somarathne, E.C. Okafor, Science and technology of ammonia combustion, Proc. Combust. Inst. 37 (1) (2019) 109-133. [2] J.F.G. Alvarez, S. Sahota, L. Lombardi, Study on fuel flexibility of a medium size gas turbine fueled by different hydrogen-based fuels from biowaste as possible alternatives to natural gas, Environ. Res. 250 (2024) 118399. [3] B.P. Sandaka, J. Kumar, Alternative vehicular fuels for environmental decarbonization: a critical review of challenges in using electricity, hydrogen, and biofuels as a sustainable vehicular fuel, Chem. Eng. J. Adv. 14 (2023) 100442. [4] A. Sharma, J. Parikh, C. Singh, Transition to LPG for cooking: a case study from two states of India, Energy Sustain. Dev. 51 (2019) 63-72. [5] K. Chelvam, M.M. Hanafiah, K.S. Woon, K. Al Ali, A review on the environmental performance of various hydrogen production technologies: an approach towards hydrogen economy, Energy Rep. 11 (2024) 369-383. [6] G.R. Zhang, E.Y. Wang, Risk identification for coal and gas outburst in underground coal mines: a critical review and future directions, Gas Sci. Eng. 118 (2023) 205106. [7] Xiao, H., Duan, Q., Sun, J. "Premixed flame propagation in hydrogen explosions", Renew. Sustain. Energy Rev., 81, 1988-2001(2018). [8] Z.W. Hu, B. Pei, M.J. Xu, Y.L. Han, H. Lv, Z.Q. Wu, L.W. Chen, Study on the inhibition effect and mechanism of N2 twin-fluid water mist with modified chloride compounds on LPG explosion, Energy 291 (2024) 130394. [9] G. Cui, S. Wang, Z.X. Bi, Z.L. Li, Minimum ignition energy for the CH4/CO2/O2 system at low initial temperature, Fuel 233 (2018) 159-165. [10] Z.M. Luo, C.C. Wei, T. Wang, B. Su, F.M. Cheng, C.C. Liu, Y.C. Wang, Effects of N2 and CO2 dilution on the explosion behavior of liquefied petroleum gas (LPG)-air mixtures, J. Hazard. Mater. 403 (2021) 123843. [11] W.H. Zhang, G.Y. Chen, A.C. Zhang, H.X. Deng, X.P. Wen, F.H. Wang, H.L. Zhou, Experimental and numerical study on the influence of N2/H2 on the laminar combustion characteristics of syngas premixed flames, J. Energy Inst. 116 (2024) 101745. [12] A. Nair, R.K. Velamati, S. Kumar, Effect OF CO2/N2 dilution on laminar burning velocity of liquid petroleum gas-air mixtures at elevated temperatures, Energy 100 (2016) 145-153. [13] L. Qiao, Y.X. Gu, W.J.A. Dahm, E.S. Oran, G.M. Faeth, Near-limit laminar burning velocities of microgravity premixed hydrogen flames with chemically-passive fire suppressants, Proc. Combust. Inst. 31 (2) (2007) 2701-2709. [14] L. Qiao, Y. Gu, W.J.A. Dahm, E.S. Oran, G.M. Faeth, A study of the effects of diluents on near-limit H2-air flames in microgravity at normal and reduced pressures, Combust. Flame 151 (1-2) (2007) 196-208. [15] L. Qiao, C.H. Kim, G.M. Faeth, Suppression effects of diluents on laminar premixed hydrogen/oxygen/nitrogen flames, Combust. Flame 143 (1-2) (2005) 79-96. [16] R.X. Shang, Z.X. Zhuang, Y. Yang, G. Li, Laminar flame speed of H2/CH4/air mixtures with CO2 and N2 dilution, Int. J. Hydrogen Energy 47 (75) (2022) 32315-32329. [17] A. Basco, F. Cammarota, V. Di Sarli, E. Salzano, A. di Benedetto, Theoretical analysis of anomalous explosion behavior for H2/CO/O2/N2 and CH4/O2/N2/CO2 mixtures in the light of combustion-induced rapid phase transition, Int. J. Hydrogen Energy 40 (25) (2015) 8239-8247. [18] Y. Liu, Q.G. Xue, H.B. Zuo, X.F. She, J.S. Wang, Effects of CO2 and N2 dilution on the characteristics and NOX emission of H2/CH4/CO/air partially premixed flame, Int. J. Hydrogen Energy 47 (35) (2022) 15909-15921. [19] T. Wang, H. Liang, Z.M. Luo, J.L. Yu, F.M. Cheng, J.Y. Zhao, B. Su, R.K. Li, X.Q. Wang, Z.R. Feng, J. Deng, Thermal suppression effects of diluent gas on the deflagration behavior of H2-air mixtures, Energy 272 (2023) 127146. [20] B. Zhang, G.L. Xiu, C.H. Bai, Explosion characteristics of argon/nitrogen diluted natural gas-air mixtures, Fuel 124 (2014) 125-132. [21] S.Y. Zhang, X.P. Wen, Z.D. Guo, S.M. Zhang, W.T. Ji, Effect of N2 and CO2 on explosion behavior of hydrogen-air mixtures in non-premixed state, Fire Saf. J. 138 (2023) 103790. [22] S.Y. Zhang, X.P. Wen, Z.D. Guo, S.M. Zhang, W.T. Ji, Experimental study on the multi-level suppression of N2 and CO2 on hydrogen-air explosion, process. Saf. Environ. Prot. 169 (2023) 970-981. [23] J.Y. Wang, Y.T. Liang, Z.Z. Zhao, Effect of N2 and CO2 on explosion behavior of H2-Liquefied petroleum gas-air mixtures in a confined space, Int. J. Hydrogen Energy 47 (56) (2022) 23887-23897. [24] H.L. Xu, X.S. Wang, Y. Li, P. Zhu, H.Y. Cong, W.X. Qin, Experimental investigation of methane/coal dust explosion under influence of obstacles and ultrafine water mist, J. Loss Prev. Process. Ind. 49 (2017) 929-937. [25] Y.L. Xu, L.Y. Wang, M.G. Yu, S.J. Wan, Z.P. Song, S.K. Wang, Study on the characteristics of gas explosion affected by induction charged water mist in confined space, J. Loss Prev. Process. Ind. 40 (2016) 227-233. [26] H. You, M.G. Yu, L.G. Zheng, A. An, Study on suppression of the coal dust/methane/air mixture explosion in experimental tube by water mist, Procedia Eng. 26 (2011) 803-810. [27] X.Y. Cao, J.J. Ren, Y.H. Zhou, Q.J. Wang, X.L. Gao, M.S. Bi, Suppression of methane/air explosion by ultrafine water mist containing sodium chloride additive, J. Hazard. Mater. 285 (2015) 311-318. [28] X.Y. Cao, J.J. Ren, M.S. Bi, Y.H. Zhou, Y.M. Li, Experimental research on the characteristics of methane/air explosion affected by ultrafine water mist, J. Hazard. Mater. 324 (2017) 489-497. [29] Y.C. Li, M.S. Bi, Y.H. Zhou, W. Gao, Hydrogen cloud explosion suppression by micron-size water mist, Int. J. Hydrogen Energy 47 (55) (2022) 23462-23470. [30] P.P. Zhang, Y.H. Zhou, X.Y. Cao, X.L. Gao, M.S. Bi, Enhancement effects of methane/air explosion caused by water spraying in a sealed vessel, J. Loss Prev. Process. Ind. 29 (2014) 313-318. [31] M.H. Feng, Q.W. Li, J. Qin, Extinguishment of hydrogen diffusion flames by ultrafine water mist in a cup burner apparatus-A numerical study, Int. J. Hydrogen Energy 40 (39) (2015) 13643-13652. [32] G. Grant, J. Brenton, D. Drysdale, Fire suppression by water sprays, Prog. Energy Combust. Sci. 26 (2) (2000) 79-130. [33] E.H. Shi, X.F. Wang, C. Qi, H. Liang, X.Q. Yan, J.L. Yu, Mechanism of influence of water mist in a closed vessel on the explosion overpressure and flame propagation characteristics of magnesium dust, Fuel 357 (2024) 129824. [34] Z. Dong, Z.M. Luo, P. Yang, Y.Y. Yu, F.Y. Meng, J. Qu, F.M. Cheng, L.T. Liu, H. Wen, J. Deng, T. Wang, Investigation on the suppression effects of Na2CO3·10H2O-CO2 on hydrogen-air deflagration, Int. J. Hydrogen Energy 142 (2025) 447-459. [35] P.G. Holborn, P. Battersby, J.M. Ingram, A.F. Averill, P.F. Nolan, Estimating the effect of water fog and nitrogen dilution upon the burning velocity of hydrogen deflagrations from experimental test data, Int. J. Hydrogen Energy 38 (16) (2013) 6882-6895. [36] Y.C. Li, M.S. Bi, C.C. Yan, Q.X. Liu, Y.H. Zhou, W. Gao, Inerting effect of carbon dioxide on confined hydrogen explosion, Int. J. Hydrogen Energy 44 (40) (2019) 22620-22631. [37] P.G. Holborn, P. Battersby, J.M. Ingram, A.F. Averill, P.F. Nolan, Modelling the mitigation of hydrogen deflagrations in a vented cylindrical rig with water fog and nitrogen dilution, Int. J. Hydrogen Energy 38 (8) (2013) 3471-3487. [38] P.N. Battersby, A.F. Averill, J.M. Ingram, P.G. Holborn, P.F. Nolan, Suppression of hydrogen-oxygen-nitrogen explosions by fine water mist: part 2. Mitigation of vented deflagrations, Int. J. Hydrogen Energy 37 (24) (2012) 19258-19267. [39] Y.L. Bao, H. Du, W.S. Chai, D.X. Nie, L. Zhou, Numerical investigation and optimization on laminar burning velocity of ammonia-based fuels based on GRI3.0 mechanism, Fuel 318 (2022) 123681. [40] X. Jiang, J.D. Chen, W.L. Huang, H. Zhao, Interpreting the effect of hydrogen addition on the auto-ignition of branched alkane: a case study of iso-butane/hydrogen/O2/Ar mixtures, Fuel 284 (2021) 119019. [41] D. Bradley, P.H. Gaskell, X.J. Gu, Burning velocities, markstein lengths, and flame quenching for spherical methane-air flames: a computational study, Combust. Flame 104 (1-2) (1996) 176-198. [42] C.K. Wu, C.K. Law, On the determination of laminar flame speeds from stretched flames, Symp. Int. Combust. 20 (1) (1985) 1941-1949. [43] Z.Y. Sun, F.S. Liu, X.C. Bao, X.H. Liu, Research on cellular instabilities in outwardly propagating spherical hydrogen-air flames, Int. J. Hydrogen Energy 37 (9) (2012) 7889-7899. [44] D. Lapalme, R. Lemaire, P. Seers, Assessment of the method for calculating the Lewis number of H2/CO/CH4 mixtures and comparison with experimental results, Int. J. Hydrogen Energy 42 (12) (2017) 8314-8328. [45] S. Kadowaki, The body-force effect on the cell formation of premixed flames, Combust. Flame 124 (3) (2001) 409-421. [46] C.K. Law, G. Jomaas, J.K. Bechtold, Cellular instabilities of expanding hydrogen/propane spherical flames at elevated pressures: theory and experiment, Proc. Combust. Inst. 30 (1) (2005) 159-167. [47] K. Mukaiyama, S. Shibayama, K. Kuwana, Fractal structures of hydrodynamically unstable and diffusive-thermally unstable flames, Combust. Flame 160 (11) (2013) 2471-2475. [48] M.L. Frankel, G.I. Sivashinsky, On effects due to thermal expansion and lewis number in spherical flame propagation, Combust. Sci. Technol. 31 (3-4) (1983) 131-138. [49] R. Ananth, H.D. Willauer, J.P. Farley, F.W. Williams, Effects of fine water mist on a confined blast, Fire Technol. 48 (3) (2012) 641-675. [50] X. Yang, J.M. Gao, X.R. Huang, J.C. Cao, Q. Du, S.H. Wu, Y.K. Qin, Effects of pressure on laminar flame characteristics of C1-C3 alkanes: a review, Fuel Process. Tech. 240 (2023) 107561. [51] S.Y. Zhou, J.C. Gao, Z.M. Luo, S.T. Hu, L. Wang, T. Wang, Role of ferromagnetic metal velvet and DC magnetic field on the explosion of a C3H8/air mixture-effect on reaction mechanism, Energy 239 (2022) 122218. [52] J.N. Chen, G.Y. Chen, A.C. Zhang, H.X. Deng, X.P. Wen, F.H. Wang, W. Sheng, H.X. Zheng, Numerical simulation of the effect of CH4/CO concentration on combustion characteristics of low calorific value syngas, ACS Omega 6 (8) (2021) 5754-5763. [53] X.L. Gu, Z.H. Huang, S. Wu, Q.Q. Li, Laminar burning velocities and flame instabilities of butanol isomers-air mixtures, Combust. Flame 157 (12) (2010) 2318-2325. [54] F. Nan, Z.M. Luo, F.M. Cheng, R.K. Li, D.H. Li, Y.L. Sun, T. Wang, Quantitative study on the inhibitory effect of carbon dioxide on hydrogen explosion and the production of carbon monoxide, Int. J. Hydrogen Energy 58 (2024) 1576-1586. |