[1] Y.J. Li, Y.J. Ding, B. Zhang, Y.C. Huang, H.F. Qi, P. Das, L.Z. Zhang, X. Wang, Z.S. Wu, X.H. Bao, N, O symmetric double coordination of an unsaturated Fe single-atom confined within a graphene framework for extraordinarily boosting oxygen reduction in Zn-air batteries, Energy Environ. Sci. 16 (6) (2023) 2629-2636. [2] K. Ishibashi, K. Ito, H. Yabu, Rare-metal-free Zn-air batteries with ultrahigh voltage and high power density achieved by iron azaphthalocyanine unimolecular layer (AZUL) electrocatalysts and acid/alkaline tandem aqueous electrolyte cells, 1 (1) (2023) 016106. [3] Y.J. Song, W.J. Li, K. Zhang, C. Han, A.Q. Pan, Progress on bifunctional carbon-based electrocatalysts for rechargeable zinc-air batteries based on voltage difference performance, Adv. Energy Mater. 14 (7) (2024) 2303352. [4] M. Gopalakrishnan, W. Kao-ian, M. Rittiruam, S. Praserthdam, P. Praserthdam, W. Limphirat, M.T. Nguyen, T. Yonezawa, S. Kheawhom, 3D hierarchical MOF-derived defect-rich NiFe spinel ferrite as a highly efficient electrocatalyst for oxygen redox reactions in zinc-air batteries, ACS Appl. Mater. Interfaces 16 (9) (2024) 11537-11551. [5] L. Zhang, D.H. Wu, M.U. Haq, J.J. Feng, F. Yang, A.J. Wang, Coordination engineering and electronic structure modulation of FeNi dual-single-atoms encapsulated in N, P-codoped 3D hierarchically porous carbon electrocatalyst for synergistically boosting oxygen reduction reaction, Appl. Catal. B Environ. Energy 351 (2024) 123991. [6] A.K. Worku, D.W. Ayele, N.G. Habtu, M.A. Teshager, Z.G. Workineh, Recent progress in MnO2-based oxygen electrocatalysts for rechargeable zinc-air batteries, Mater. Today Sustain. 13 (2021) 100072. [7] Z.H. Zhou, X.Y. Zheng, M.N. Liu, P. Liu, S.B. Han, Y.R. Chen, B. Lan, M. Sun, L. Yu, Engineering amorphous/crystalline structure of manganese oxide for superior oxygen catalytic performance in rechargeable zinc-air batteries, ChemSusChem 15 (15) (2022) e202200612. [8] Y.C. Zhang, S. Ullah, R.R. Zhang, L. Pan, X.W. Zhang, J.J. Zou, Manipulating electronic delocalization of Mn3O4 by manganese defects for oxygen reduction reaction, Appl. Catal. B Environ. 277 (2020) 119247. [9] H.W. Shi, X. Yin, Y.N. Hua, Z. Gao, MnO nanoparticles loaded on three-dimensional N-doped carbon as highly efficient electrocatalysts for the oxygen reduction reaction in alkaline media, Int. J. Hydrog. Energy 47 (47) (2022) 20507-20517. [10] L. Li, X.H. Feng, Y. Nie, S.G. Chen, F. Shi, K. Xiong, W. Ding, X.Q. Qi, J.S. Hu, Z.D. Wei, L.J. Wan, M.R. Xia, Insight into the effect of oxygen vacancy concentration on the catalytic performance of MnO2, ACS Catal. 5 (8) (2015) 4825-4832. [11] D.A. Tompsett, S.C. Parker, M. Saiful Islam, Rutile (β-) MnO2 surfaces and vacancy formation for high electrochemical and catalytic performance, J. Am. Chem. Soc. 136 (4) (2014) 1418-1426. [12] D. Tianran Zhang, D. Xiaoming Ge, Z. Zhang, D. Nguk Neng Tham, D. Zhaolin Liu, D. Adrian Fisher, P. Jim Yang Lee, Improving the electrochemical oxygen reduction activity of manganese oxide nanosheets with sulfurization-induced nanopores, ChemCatChem 10 (2) (2018) 422-429. [13] F.Y. Cheng, T.R. Zhang, Y. Zhang, J. Du, X.P. Han, J. Chen, Enhancing electrocatalytic oxygen reduction on MnO(2) with vacancies, Angew. Chem. Int. Ed 52 (9) (2013) 2474-2477. [14] B. Li, X. Liu, Y.L. Liu, T.J. Xu, Z.L. He, S. Liu, J.N. Xie, Y.L. Chen, X.H. Ning, H. He, Enhanced oxygen reduction activity of α-MnO2 by NH3 plasma treatment, Nanotechnology 35 (28) (2024) 285701. [15] M. Jiang, C.P. Fu, J. Yang, Q. Liu, J. Zhang, B.D. Sun, Defect-engineered MnO2 enhancing oxygen reduction reaction for high performance Al-air batteries, Energy Storage Mater. 18 (2019) 34-42. [16] N. Vilas Boas, J.B. Souza Jr, L.C. Varanda, S.A.S. Machado, M.L. Calegaro, Bismuth and cerium doped cryptomelane-type manganese dioxide nanorods as bifunctional catalysts for rechargeable alkaline metal-air batteries, Appl. Catal. B Environ. 258 (2019) 118014. [17] D.J. Davis, T.N. Lambert, J.A. Vigil, M.A. Rodriguez, M.T. Brumbach, E.N. Coker, S.J. Limmer, Role of Cu-ion doping in Cu-α-MnO2 nanowire electrocatalysts for the oxygen reduction reaction, J. Phys. Chem. C 118 (31) (2014) 17342-17350. [18] X.Y. Zheng, L. Yu, B. Lan, G. Cheng, T. Lin, B.B. He, W.J. Ye, M. Sun, F. Ye, Three-dimensional radial α-MnO2 synthesized from different redox potential for bifunctional oxygen electrocatalytic activities, J. Power Sources 362 (2017) 332-341. [19] G. Cheng, S.L. Xie, B. Lan, X.Y. Zheng, F. Ye, M. Sun, X.H. Lu, L. Yu, Phase controllable synthesis of three-dimensional star-like MnO2 hierarchical architectures as highly efficient and stable oxygen reduction electrocatalysts, J. Mater. Chem. A 4 (42) (2016) 16462-16468. [20] X.W. Luo, L. Xu, L.B. Yang, J.W. Zhao, T. Asefa, R.L. Qiu, Z.J. Huang, Ball milling of La2O3 tailors the crystal structure, reactive oxygen species, and free radical and non-free radical photocatalytic pathways, ACS Appl. Mater. Interfaces 16 (15) (2024) 18671-18685. [21] J. He, P.W. Wu, L.J. Lu, H.P. Li, H.Y. Ji, M.Q. He, Q.D. Jia, M.Q. Hua, W.S. Zhu, H.M. Li, Lattice-refined transition-metal oxides via ball milling for boosted catalytic oxidation performance, ACS Appl. Mater. Interfaces 11 (40) (2019) 36666-36675. [22] Y. Yang, S.Z. Zhang, S.W. Wang, K.L. Zhang, H.Z. Wang, J. Huang, S.B. Deng, B. Wang, Y.J. Wang, G. Yu, Ball milling synthesized MnOx as highly active catalyst for gaseous POPs removal: significance of mechanochemically induced oxygen vacancies, Environ. Sci. Technol. 49 (7) (2015) 4473-4480. [23] G. Cheng, L. Yu, T. Lin, R.N. Yang, M. Sun, B. Lan, L.L. Yang, F.Z. Deng, A facile one-pot hydrothermal synthesis of β-MnO2 nanopincers and their catalytic degradation of methylene blue, J. Solid State Chem. 217 (2014) 57-63. [24] R. Verma, K.R. Singh, R. Verma, R.P. Singh, J. Singh, Nanoengineered β-MnO2/rGO nanobead-based bioconjugate interfaces for the electrochemical detection of dopamine for the potential to manage neurological diseases and depression, New J. Chem. 48 (2) (2024) 554-568. [25] S. Ndayiragije, Y.F. Zhang, Y.Q. Zhou, Z. Song, N. Wang, T. Majima, L.H. Zhu, Mechanochemically tailoring oxygen vacancies of MnO2 for efficient degradation of tetrabromobisphenol A with peroxymonosulfate, Appl. Catal. B Environ. Energy 307 (2022) 121168. [26] Y.F. Li, T.Y. Chen, S.Q. Zhao, P. Wu, Y.N. Chong, A.Q. Li, Y. Zhao, G.X. Chen, X.J. Jin, Y.C. Qiu, D.Q. Ye, Engineering cobalt oxide with coexisting cobalt defects and oxygen vacancies for enhanced catalytic oxidation of toluene, ACS Catal. 12 (9) (2022) 4906-4917. [27] Q. Yu, C. Wang, X.Y. Li, Z. Li, L. Wang, Q. Zhang, G.L. Wu, Z.C. Li, Engineering an effective MnO2 catalyst from LaMnO3 for catalytic methane combustion, Fuel 239 (2019) 1240-1245. [28] J. Cao, D.D. Zhang, X.Y. Zhang, S.M. Wang, J.T. Han, Y.S. Zhao, Y.H. Huang, J.Q. Qin, Mechanochemical reactions of MnO2 and graphite nanosheets as a durable zinc ion battery cathode, Appl. Surf. Sci. 534 (2020) 147630. [29] Y.F. Jian, Z.Y. Jiang, C. He, M.J. Tian, W.Y. Song, G.Q. Gao, S.N. Chai, Crystal facet engineering induced robust and sinter-resistant Au/α-MnO2 catalyst for efficient oxidation of propane: indispensable role of oxygen vacancies and Auδ+ species, Catal. Sci. Technol. 11 (3) (2021) 1089-1097. [30] Y. Yu, J. Ji, K. Li, H.B. Huang, R.P. Shrestha, N.T. Kim Oanh, E. Winijkul, J.G. Deng, Activated carbon supported MnO nanoparticles for efficient ozone decomposition at room temperature, Catal. Today 355 (2020) 573-579. [31] T. Zhai, S.L. Xie, M.H. Yu, P.P. Fang, C.L. Liang, X.H. Lu, Y.X. Tong, Oxygen vacancies enhancing capacitive properties of MnO2 nanorods for wearable asymmetric supercapacitors, Nano Energy 8 (2014) 255-263. [32] T.H. Lu, C.H. Zeng, H.Z. Zhang, X. Shi, Y.X. Yu, X.H. Lu, Valence engineering enhancing NH4 + storage capacity of manganese oxides, Small 19 (14) (2023) e2206727. [33] Y. Wu, A.J. Wang, Q.Y. Zhang, H.W. Jian, D.J. Lei, X.H. Shen, C. Han, Regulation of oxygen vacancies in MnCO3-based catalysts by thermally inducing for efficiently catalytic benzene combustion, Sep. Purif. Technol. 354 (2025) 128897. [34] P. Wu, S.Q. Dai, G.X. Chen, S.Q. Zhao, Z. Xu, M.L. Fu, P.R. Chen, Q. Chen, X.J. Jin, Y.C. Qiu, S.H. Yang, D.Q. Ye, Interfacial effects in hierarchically porous α-MnO2/Mn3O4 heterostructures promote photocatalytic oxidation activity, Appl. Catal. B Environ. 268 (2020) 118418. [35] F. Wang, H.X. Dai, J.G. Deng, G.M. Bai, K.M. Ji, Y.X. Liu, Manganese oxides with rod-, wire-, tube-, and flower-like morphologies: highly effective catalysts for the removal of toluene, Environ. Sci. Technol. 46 (7) (2012) 4034-4041. [36] Y. Wu, A.J. Wang, H. Zhao, Q.Y. Zhang, D.J. Lei, C. Han, Oxygen-dependent catalytic activity of mesoporous MnCO3-based catalysts for highly effective benzene oxidation, Fuel 363 (2024) 130886. [37] S. Pawlowska, K. Lankauf, P. Blaszczak, J. Karczewski, K. Gornicka, G. Cempura, P. Jasinski, S. Molin, Tailoring a low-energy ball milled MnCo2O4 spinel catalyst to boost oxygen evolution reaction performance, Appl. Surf. Sci. 619 (2023) 156720. [38] S.H. Lee, G. Nam, J. Sun, J.S. Lee, H.W. Lee, W. Chen, J. Cho, Y. Cui, Enhanced intrinsic catalytic activity of λ-MnO2 by electrochemical tuning and oxygen vacancy generation, Angew. Chem. Int. Ed 55 (30) (2016) 8599-8604. [39] H. Tian, L.M. Zeng, Y.F. Huang, Z.H. Ma, G. Meng, L.X. Peng, C. Chen, X.Z. Cui, J.L. Shi, In situ electrochemical Mn(III)/Mn(IV) generation of Mn(II)O electrocatalysts for high-performance oxygen reduction, Nanomicro Lett. 12 (1) (2020) 161. [40] F.H.B. Lima, M.L. Calegaro, E.A. Ticianelli, Investigations of the catalytic properties of manganese oxides for the oxygen reduction reaction in alkaline media, J. Electroanal. Chem. 590 (2) (2006) 152-160. [41] H.B. Wu, J. Wang, J. Yan, Z.X. Wu, W. Jin, MOF-derived two-dimensional N-doped carbon nanosheets coupled with Co-Fe-P-Se as efficient bifunctional OER/ORR catalysts, Nanoscale 11 (42) (2019) 20144-20150. [42] Z.X. Wu, H.B. Wu, T.F. Niu, S. Wang, G.T. Fu, W. Jin, T.Y. Ma, Sulfurated metal-organic framework-derived nanocomposites for efficient bifunctional oxygen electrocatalysis and rechargeable Zn-air battery, ACS Sustainable Chem. Eng. 8 (24) (2020) 9226-9234. [43] X.R. Yi, X.B. He, F.X. Yin, B.H. Chen, G.R. Li, H.Q. Yin, Co-CoO-Co3O4/N-doped carbon derived from metal-organic framework: The addition of carbon black for boosting oxygen electrocatalysis and Zn-Air battery, Electrochim. Acta 295 (2019) 966-977. [44] N.N. Xu, Q. Nie, L. Luo, C.Z. Yao, Q.J. Gong, Y.Y. Liu, X.D. Zhou, J.L. Qiao, Controllable hortensia-like MnO2 synergized with carbon nanotubes as an efficient electrocatalyst for long-term metal-air batteries, ACS Appl. Mater. Interfaces 11 (1) (2019) 578-587. [45] Y.X. Sun, H.Y. Li, S.Q. Guo, C.J. Li, Metal-based cathode catalysts for electrocatalytic ORR in microbial fuel cells: a review, Chin. Chem. Lett. 35 (5) (2024) 109418. [46] L. Payattikul, C.Y. Chen, Y.S. Chen, M. Raja Pugalenthi, K. Punyawudho, Recent advances and synergistic effects of non-precious carbon-based nanomaterials as ORR electrocatalysts: a review, Molecules 28 (23) (2023) 7751. [47] Y.N. Qin, T.Z. Han, L.G. Chen, K.X. Yan, J. Wang, N. Wang, B.R. Hou, Ov-rich γ-MnO2 enhanced electrocatalytic three-electron oxygen reduction to hydroxyl radicals for sterilization in neutral media, Nanoscale Horiz. 9 (11) (2024) 1999-2006. [48] Q. Sun, Z. Guo, T. Shu, Y. Li, K. Li, Y. Zhang, L. Li, J. Ning, K.X. Yao, Lithium-induced oxygen vacancies in MnO2@MXene for high-performance zinc-air batteries, ACS Appl. Mater. Interfaces 16 (10) (2024) 12781-12792. |