[1] L.Q. Mai, M.Y. Yan, Y.L. Zhao, Track batteries degrading in real time, Nature 546 (7659) (2017) 469-470. [2] H. Gu, M.Y. Gao, K. Shen, T.L. Zhang, J.H. Zhang, X.J. Zheng, X.M. Guo, Y.J. Liu, F. Cao, H.X. Gu, Q.H. Kong, S.L. Xiong, F127 assisted fabrication of Ge/rGO/CNTs nanocomposites with three-dimensional network structure for efficient lithium storage, Chin. Chem. Lett. 35 (9) (2024) 109273. [3] Q.Q. Fan, J.H. Zhang, S.Y. Fan, B.J. Xi, Z.Y. Gao, X.M. Guo, Z.Y. Duan, X.J. Zheng, Y.J. Liu, S.L. Xiong, Advances in functional organosulfur-based mediators for regulating performance of lithium metal batteries, Adv. Mater. 36 (45) (2024) e2409521. [4] L. Sun, Y. Liu, L.J. Wang, Z. Jin, Advances and future prospects of micro-silicon anodes for high-energy-density lithium-ion batteries: a comprehensive review, Adv. Funct. Mater. 34 (39) (2024) 2403032. [5] J. Choi, H. Jeong, J. Jang, A.R. Jeon, I. Kang, M. Kwon, J. Hong, M. Lee, Weakly solvating solution enables chemical prelithiation of graphite-SiOx anodes for high-energy Li-ion batteries, J. Am. Chem. Soc. 143 (24) (2021) 9169-9176. [6] H. Gu, Z.P. Zhu, Z.Y. Gao, J.H. Zhang, X.M. Guo, Y.J. Liu, X.J. Zheng, Q.Q. Fan, Z.Y. Duan, F. Cao, C.S. Li, Q.H. Kong, J. University, Ge-Si/C nanofiber composite with enhanced cyclic stability and rate capability for lithium-ion batteries, ACS Appl. Nano Mater. 8 (5) (2025) 2196-2204. [7] J.L. Chen, X.M. Guo, M.Y. Gao, J. Wang, S.Q. Sun, K. Xue, S.Y. Zhang, Y.J. Liu, J.H. Zhang, Self-supporting dual-confined porous Si@c-ZIF@carbon nanofibers for high-performance lithium-ion batteries, Chem. Commun. 57 (81) (2021) 10580-10583. [8] H.T. Xia, X.J. Mu, J.H. Zhou, W.P. Liu, G.J. Wu, F. Dang, D.M. Zhang, L. Miao, H.Q. Qin, Z.J. Zhang, X.X. Lei, A.J. Lu, Z.X. Mo, Realization of high-capacity coulombic efficiency in sodium alginate/carbon nanotube double network coated Si-anode for lithium-ion batteries, Sustain. Mater. Technol. 40 (2024) e00940. [9] P.L. Yu, Z.W. Li, D.C. Zhang, Q. Xiong, J. Yu, C.Y. Zhi, Hierarchical yolk-shell silicon/carbon anode materials enhanced by vertical graphene sheets for commercial lithium-ion battery applications, Adv. Funct. Mater. 35 (2) (2025) 2413081. [10] Z.Y. He, C.X. Zhang, Z.X. Zhu, Y.X. Yu, C. Zheng, F. Wei, Advances in carbon nanotubes and carbon coatings as conductive networks in silicon-based anodes, Adv. Funct. Mater. 34 (48) (2024) 2408285. [11] S.Y. Zhang, Y.C. Xue, Y.T. Zhang, C.X. Zhu, X.M. Guo, F. Cao, X.J. Zheng, Q.H. Kong, J.H. Zhang, T.X. Fan, KOH-assisted aqueous synthesis of bimetallic metal-organic frameworks and their derived selenide composites for efficient lithium storage, Int. J. Miner. Metall. Mater. 30 (4) (2023) 601-610. [12] K.M. Chen, Z.W. Li, J.H. Zhou, J. Gao, H.Q. Qin, W.P. Liu, X.X. Lei, X.Y. Wang, L. Miao, Hollow nitrogen-doped carbon layer-coated nano-silicon as anode material for high-performance lithium-ion batteries, Appl. Mater. Today 42 (2025) 102561. [13] R.S. Gao, J. Tang, X.L. Yu, S. Tang, K. Ozawa, T. Sasaki, L.C. Qin, In situ synthesis of MOF-derived carbon shells for silicon anode with improved lithium-ion storage, Nano Energy 70 (2020) 104444. [14] B.Q. Chen, D.M. Xu, S.M. Chai, Z. Chang, A.Q. Pan, Enhanced silicon anodes with robust SEI formation enabled by functional conductive binder, Adv. Funct. Mater. 34 (34) (2024) 2401794. [15] Q.Q. Wu, Y.T. Zhong, R.M. Chen, G.Y. Ling, X.H. Wang, Y.R. Shen, C. Hao, Cu-Ag-C@Ni3S4 with core shell structure and rose derived carbon electrode materials: an environmentally friendly supercapacitor with high energy and power density, Ind. Crops Prod. 222 (2024) 119676. [16] B.J. Chen, L.H. Zu, Y. Liu, R.J. Meng, Y.T. Feng, C.X. Peng, F. Zhu, T.Z. Hao, J.J. Ru, Y.G. Wang, J.H. Yang, Space-confined atomic clusters catalyze superassembly of silicon nanodots within carbon frameworks for use in lithium-ion batteries, Angew. Chem. Int. Ed 59 (8) (2020) 3137-3142. [17] Y.Z. Zhou, Y.J. Yang, G.L. Hou, D. Yi, B. Zhou, S.M. Chen, T.D. Lam, F.L. Yuan, D. Golberg, X. Wang, Stress-relieving defects enable ultra-stable silicon anode for Li-ion storage, Nano Energy 70 (2020) 104568. [18] D. Jin, X.F. Yang, Y.Q. Ou, M.M. Rao, Y.T. Zhong, G.M. Zhou, D.Q. Ye, Y.C. Qiu, Y.P. Wu, W.S. Li, Thermal pyrolysis of Si@ZIF-67 into Si@N-doped CNTs towards highly stable lithium storage, Sci. Bull. 65 (6) (2020) 452-459. [19] C.L. Jiang, L. Xiang, S.J. Miao, L. Shi, D.H. Xie, J.X. Yan, Z.J. Zheng, X.M. Zhang, Y.B. Tang, Flexible interface design for stress regulation of a silicon anode toward highly stable dual-ion batteries, Adv. Mater. 32 (17) (2020) e1908470. [20] J.J. Zhao, J. Chen, M.M. Zhou, Q. Zhang, X.C. Li, J.Q. Pan, Ultra-firm phthalocyanine-based tetragonal covalent organic framework layer @ nano silicon anode for high durability Li-ion battery, Chem. Eng. J. 488 (2024) 151110. [21] Y.H. Song, L. Zuo, S.H. Chen, J.F. Wu, H.Q. Hou, L. Wang, Porous nano-Si/carbon derived from zeolitic imidazolate Frameworks@Nano-Si as anode materials for lithium-ion batteries, Electrochim. Acta 173 (2015) 588-594. [22] Z.Y. Wang, H.H. Zhang, X.Y. Zhang, X.M. Wang, X. Zhang, Solvent-free and large-scale synthesis of SiO x/C nanocomposite with carbon encapsulation for high-performance lithium-ion battery anodes, Compos. Part B Eng. 247 (2022) 110308. [23] T.L. Zhang, M.R. Wu, H. Gu, H.W. Yu, M. Zhou, X.M. Guo, Y.J. Liu, X.J. Zheng, Q.H. Kong, J.H. Zhang, Double carbon modified CoS2/NiS2 as anode material for efficient lithium storage performance, J. Energy Storage 73 (2023) 108981. [24] Y.Y. Yu, C. Yang, Y. Jiang, J.D. Zhu, J.H. Zhang, M.J. Jiang, Consecutive covalent bonds reconstruct robust dual-interfaces by carbonized binder to enable conductive-additive-free durable silicon anode, Nano Energy 130 (2024) 110108. [25] X.K. Wang, Y. Pan, X.H. Wang, Y.N. Guo, C.H. Ni, J.B. Wu, C. Hao, High performance hybrid supercapacitors assembled with multi-cavity nickel cobalt sulfide hollow microspheres as cathode and porous typha-derived carbon as anode, Ind. Crops Prod. 189 (2022) 115863. [26] H. Chen, Y.Y. Xiong, J. Li, J. Abed, D. Wang, A. Pedrazo-Tardajos, Y.P. Cao, Y.T. Zhang, Y. Wang, M. Shakouri, Q.F. Xiao, Y.F. Hu, S. Bals, E.H. Sargent, C.Y. Su, Z.Y. Yang, Epitaxially grown silicon-based single-atom catalyst for visible-light-driven syngas production, Nat. Commun. 14 (1) (2023) 1719. [27] J. Ma, J. Yu, G.Y. Chen, Y. Bai, S.K. Liu, Y.G. Hu, M. Al-Mamun, Y. Wang, W.B. Gong, D. Liu, Y.F. Li, R. Long, H.J. Zhao, Y.J. Xiong, Rational design of N-doped carbon-coated cobalt nanoparticles for highly efficient and durable photothermal CO2 conversion, Adv. Mater. 35 (42) (2023) e2302537. [28] K. Xiao, J. Wang, Z. Chen, Y. Qian, Z. Liu, L. Zhang, X. Chen, J. Liu, X. Fan, Z.X. Shen, Improving polysulfides adsorption and redox kinetics by the Co4 N nanoparticle/N-doped carbon composites for lithium-sulfur batteries, Small 15 (25) (2019) e1901454. [29] F. Yuan, Y.N. Li, Y.Q. Wang, Z.J. Li, Q.J. Wang, H.L. Sun, D. Zhang, W. Wang, B. Wang, Cobalt nanoparticles synergize with oxygen-containing functional groups to realize fast and stable potassium storage for carbon anode, Adv. Funct. Mater. 33 (46) (2023) 2304753. [30] H. Wu, G.H. Yu, L.J. Pan, N. Liu, M.T. McDowell, Z.N. Bao, Y. Cui, Stable Li-ion battery anodes by in situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles, Nat. Commun. 4 (2013) 1943. [31] M.Y. Gao, Z.H. Tang, M.R. Wu, J.L. Chen, Y.C. Xue, X.M. Guo, Y.J. Liu, Q.H. Kong, J.H. Zhang, Self-supporting N, P doped Si/CNTs/CNFs composites with fiber network for high-performance lithium-ion batteries, J. Alloys Compd. 857 (2021) 157554. [32] W.W. Zeng, L. Wang, X. Peng, T.F. Liu, Y.Y. Jiang, F. Qin, L. Hu, P.K. Chu, K.F. Huo, Y.H. Zhou, Enhanced ion conductivity in conducting polymer binder for high-performance silicon anodes in advanced lithium-ion batteries, Adv. Energy Mater. 8 (11) (2018) 1702314. [33] L. Wang, Z.H. Wang, L.L. Xie, L.M. Zhu, X.Y. Cao, ZIF-67-derived N-doped Co/C nanocubes as high-performance anode materials for lithium-ion batteries, ACS Appl. Mater. Interfaces 11 (18) (2019) 16619-16628. [34] X.M. Fan, T. Cai, S.Y. Wang, Z.H. Yang, W.X. Zhang, Carbon nanotube-reinforced dual carbon stress-buffering for highly stable silicon anode material in lithium-ion battery, Small 19 (30) (2023) e2300431. [35] Q. Wang, J.C. Su, H.L. Chen, D.Q. Wang, X.Y. Tian, Y.J. Zhang, X. Feng, S. Wang, J. Li, H.L. Jin, Highly conductive nitrogen-doped sp2/sp3 hybrid carbon as a conductor-free charge storage host, Adv. Funct. Mater. 32 (51) (2022) 2209201. [36] M.Y. Gao, Y.C. Xue, Y.T. Zhang, C.X. Zhu, H.W. Yu, X.M. Guo, S.S. Sun, S.L. Xiong, Q.H. Kong, J.H. Zhang, Growing Co-Ni-Se nanosheets on 3D carbon frameworks as advanced dual functional electrodes for supercapacitors and sodium ion batteries, Inorg. Chem. Front. 9 (15) (2022) 3933-3942. [37] J.L. Chen, J. Wang, S.Y. Zhang, K. Xue, J.H. Zhang, F. Cao, Q.H. Kong, X.M. Guo, Si nanoparticles confined in N, P- doped double carbon as efficient anode materials for lithium ion batteries, J. Alloys Compd. 935 (2023) 167850. [38] H.W. Yu, M.Y. Gao, M. Zhou, H. Gu, X.J. Zheng, X.M. Guo, Y.J. Liu, F. Cao, Q.H. Kong, J.H. Zhang, F127/PDA dual-assisted fabricating high dispersed Ge nanoparticles/N-doped porous carbon composites with efficient lithium storage, J. Mater. Res. Technol. 26 (2023) 5055-5064. |