[1] D. Li, J. Jiao, D. Liao, The development and thinking of phosphogypsum used in new building materials in China, New Building Materials 48 (11) (2021) 1-4+11. (in Chinese). [2] H. Deng, S. Hou, Z. Li, G. Xu, R.a. Chi, B. Xi, Update and future of phosphogypsum reuse, Inorg Chem Industry 56 (1) (2023) 1-8+1. (in Chinese). [3] J. Xia, Bottleneck and key technology of phosphogypsum as building material, Phos & Com Fert 35 (11) (2020) 6. (in Chinese). [4] X. Li, X.F. Lv, L. Xiang, Review of the state of impurity occurrences and impurity removal technology in phosphogypsum, Materials 16 (16) (2023) 5630. [5] H.T. Zhao, H.Q. Li, W.J. Bao, C.Y. Wang, S.G. Li, W.G. Lin, Spectral analysis of trace fluorine phase in phosphogypsum, Spectrosc. Spectr. Anal. 35 (8) (2015) 2333-2338. [6] C. Li, S.Z. Wang, Y.S. Wang, X.B. An, G. Yang, Y. Sun, Study on synergistic leaching of potassium and phosphorus from potassium feldspar and solid waste phosphogypsum via coupling reactions, Chin. J. Chem. Eng. 65 (2024) 117-129. [7] D.B. Jiang, J.H. Tan, P. Yuan, H.X. Guan, P.L. Nan, Methods of the harmless treatment of harmful components in phosphogypsum, J. Jilin Inst. Chem. Technol. 31 (1) (2014) 33-36. [8] F. Arianpour, A.C. Arianpour, B. Aali, Characterization and properties of sodium hexa-fluorosilicate and its potential application in the production of sodium fluoride, Silicon 13 (12) (2021) 4381-4389. [9] W.X. Cao, W. Yi, J.H. Peng, J. Li, S.H. Yin, Recycling of phosphogypsum to prepare gypsum plaster: Effect of calcination temperature, J. Build. Eng. 45 (2022) 103511. [10] H.G. Jin, Y.X. Wang, X.B. An, S.Z. Wang, Y.S. Wang, G. Yang, L.F. Shi, Y. Sun, A review of fluoride removal from phosphorous gypsum: a quantitative analysis via a machine learning approach, Materials 17 (14) (2024) 3606. [11] M. Zeng, Y. Ruan, J. Chen, C. Wang, B. Zhang, Z. Zhou, Effects Comparison of Different Pretreatment Methods to Phosphogypsum, The World Build Mater 32 (02) (2011) 18-21. [12] H. Zhao, W. Bao, Z. Sun, S. Li, H. Li, W. Lin, Deep removal of impurities from phosphogypsum, Chem Indust and Eng Prog 36 (4) (2017) 1240-1246. (in Chinese). [13] B. Ping, H. Jun-song, L. Ao-lan, G. Hong, A review on comprehensive utilization and pretreatment method of phosphogypsum, Mod Chem Indust 43 (S2) (2023) 76-79+85. (in Chinese). [14] Z. Li, J. Chen, Q. Zhang, Z. Shen, A Study on the removal of phosphorus and fluorine impurities from phosphogypsum, Acta Minera Sinica 40 (5) (2020) 639-646. (in Chinese). [15] M. Yang, Y. Pang, Investigation of cement retarder made of chemically pretreated phosphogypsum, J. Lanzhou Univ. Technol. 33 (6) (2007) 58-60. [16] Y. Ennaciri, I. Zdah, H. El Alaoui-Belghiti, M. Bettach, Characterization and purification of waste phosphogypsum to make it suitable for use in the plaster and the cement industry, chem eng commun 207 (3) (2020) 382-392. [17] L. Zou, The effect of additives on the crystallzation process of calcium sulfate, Master Thesis, Tianjin University of Science and Technology, Tianjin, 2000. [18] Q. Fu, S. Luo, X. Ma, X. Wang, Z. Zhang, X. Wang, L. Yang, Impurities removal from phosphogypsum by leaching neutralization method, Inorg Chem Indust 47 (07) (2015) 44-47. (in Chinese). [19] M.M. Smadi, R.H. Haddad, A.M. Akour, Potential use of phosphogypsum in concrete, Cem. Concr. Res. 29 (9) (1999) 1419-1425. [20] T.Y. Ren, J. Zhu, W.C. Liu, X.F. Zhu, J.K. Yang, Water resistance of composite binders containing phosphogpysum with different pretreatment processes, Adv. Cem. Res. 24 (2) (2012) 111-120. [21] F. Pan, S.G. Ma, Y. Ge, C.L. Fan, Q.S. Zhu, Fluidization thermal decomposition of sodium fluosilicate, Chin. J. Chem. Eng. 57 (2023) 329-337. [22] V.S. Singh, S.V. Moharil, Synthesis and characterization of K2SiF6 hexafluorosilicate, IOP Conf. Ser.: Mater. Sci. Eng. 1104 (1) (2021) 012004. [23] N. Soltani, M.I. Pech-Canul, L.A. Gonzalez, A. Bahrami, Mechanism and parameters controlling the decomposition kinetics of Na2SiF6 powder to SiF4, Int. J. Chem. Kinet. 48 (7) (2016) 379-395. [24] R. Stodolski, L. Kolditz, Some aspects of real structure and thermal decomposition of K2SiF6, J. Fluor. Chem. 29 (1-2) (1985) 73. [25] C. Liu, J.X. Gu, S. Zhou, B.B. Qian, B. Etschmann, J.Z. Liu, D.X. Yu, L. Zhang, Silica-assisted pyro-hydrolysis of CaCl2 waste for the recovery of hydrochloric acid (HCl): Reaction pathways with the evolution of Ca(OH)Cl intermediate by experimental investigation and DFT modelling, J. Hazard. Mater. 439 (2022) 129620. [26] C. Liu, J. Gu, S. Zhou, B. Qian, B. Etschmann, J.Z. Liu, D. Yu, L. Zhang, Silica-assisted pyro-hydrolysis of CaCl2 waste for the recovery of hydrochloric acid (HCl): Reaction pathways with the evolution of Ca(OH)Cl intermediate by experimental investigation and DFT modelling, J. Hazard. Mater. 439 (2022) 129620. [27] Y.J. Liu, The detemination of fluorine content in ground phosphate rock, J. Shenyang Norm. Univ. Nat. Sci. 20 (2) (2002) 124-127. [28] Y. Kashiwaya, A.W. Cramb, Kinetics of formation and dissociation of Na2SiF6, Metall. Mater. Trans. B 33 (1) (2002) 129-136. [29] Y. Sun, V. Sage, Z. Sun, An enhanced process of using direct fluidized bed calcination of shrimp shell for biodiesel catalyst preparation, Chem. Eng. Res. Des. 126 (2017) 142-152. [30] Y.S. Wang, L.F. Shi, H.L. Li, Y.X. Wang, Z.Y. Wang, X.B. An, M.Z. Tang, G. Yang, J. He, J. Hu, Y. Sun, Clean process to utilize the potassium-containing phosphorous rock with simultaneous HCl and KCl production via the steam-mediated reactions, ACS Omega 7 (28) (2022) 24561-24573. [31] Q. Qi, J. Liu, X. Cao, J. Zhou, S. Zhang, K. Cen, Stability of CaF2 at High Temperature, Envir Sci 23 (03) (2002) 111-114. (in Chinese). [32] D.L. Deadmore, J.S. Machin, A.W. Allen, Stability of inorganic fluorine-bearing compounds: I, binary metallic fluorides, J. Am. Ceram. Soc. 44 (3) (1961) 105-109. [33] D.L. Deadmore, J.S. Machin, A.W. Allen, Stability of inorganic fluorine-bearing compounds: II, complex fluorides, J. Am. Ceram. Soc. 45 (3) (1962) 120-122. [34] M. Kanezashi, T. Matsutani, H. Nagasawa, T. Tsuru, Fluorine-induced microporous silica membranes: Dramatic improvement in hydrothermal stability and pore size controllability for highly permeable propylene/propane separation, J. Membr. Sci. 549 (2018) 111-119. [35] F.L. Liu, Y.Y. Chen, B. Milicevic, C.Y. Jiang, S.C. Huang, L. Zhou, J.B. Zhou, M.M. Wu, Hydroquinone-modified Mn4+-activated fluoride red phosphors with improved water-resistance, Colloids Surf. A Physicochem. Eng. Aspects 661 (2023) 130954. [36] J. Yeon, Development of a reaxff reactive force field for silicon/ oxygen/ hydrogen/ fluoride interactions and applications to hydroxylation and friction, Ph. D. Thesis, The Pennsylvania State Univ., USA, 2016. [37] Y. Xia, J. Li, Y.Z. Zhang, Y.G. Yin, B.L. Chen, Y. Liang, G.B. Jiang, R.N. Zare, Contact between water vapor and silicate surface causes abiotic formation of reactive oxygen species in an anoxic atmosphere, Proc. Natl. Acad. Sci. USA 120 (30) (2023) e2302014120. |