[1] Z. Dobo, T. Dinh, T. Kulcsar, A review on recycling of spent lithium-ion batteries, Energy Rep. 9 (2023) 6362-6395. [2] X. Wang, X.M. Zhang, C.M. Zhang, L. Zhang, J.W. Wen, C.X. Wang, G.Y. Huang, Synthesis of high-nickel and high-performance ternary cathode materials through spent lithium-ion batteries recycling system, Sustain. Chem. Pharm. 31 (2023) 100959. [3] N. Cao, Y. Zhang, Z.Q. He, Z.L. Dong, X.Z. Bi, S.S. Kong, L.H. Wang, S.B. He, H. Hu, M.B. Wu, Efficient reduction of spent cathode materials via in situ thermal reduction by defect-rich petroleum coke, Sep. Purif. Technol. 334 (2024) 126029. [4] M.Y. Chen, X.T. Ma, B. Chen, R. Arsenault, P. Karlson, N. Simon, Y. Wang, Recycling end-of-life electric vehicle lithium-ion batteries, Joule 3 (11) (2019) 2622-2646. [5] G.X. Ren, C.B. Liao, Z.H. Liu, S.W. Xiao, Lithium and manganese extraction from manganese-rich slag originated from pyrometallurgy of spent lithium-ion battery, Trans. Nonferrous Met. Soc. China 32 (8) (2022) 2746-2756. [6] H. Dang, B.F. Wang, Z.D. Chang, X. Wu, J.G. Feng, H.L. Zhou, W.J. Li, C.Y. Sun, Recycled lithium from simulated pyrometallurgical slag by chlorination roasting, ACS Sustainable Chem. Eng. 6 (10) (2018) 13160-13167. [7] K.H. Gu, X.S. Gao, Y.X. Chen, W.Q. Qin, J.W. Han, Closed-loop recycling of spent lithium-ion batteries based on selective sulfidation: an unconventional approach, Waste Manag. 169 (2023) 32-42. [8] N. Cao, Y.L. Zhang, L.L. Chen, Y. Jia, Y.G. Huang, Priority recovery of lithium and effective leaching of nickel and cobalt from spent lithium-ion battery, Trans. Nonferrous Met. Soc. China 32 (5) (2022) 1677-1690. [9] G.W. Zhang, X. Yuan, C.Y. Tay, Y.Q. He, H.F. Wang, C.L. Duan, Selective recycling of lithium from spent lithium-ion batteries by carbothermal reduction combined with multistage leaching, Sep. Purif. Technol. 314 (2023) 123555. [10] C. Yang, J.L. Zhang, G.Q. Liang, H. Jin, Y.Q. Chen, C.Y. Wang, An advanced strategy of “metallurgy before sorting” for recycling spent entire ternary lithium-ion batteries, J. Clean. Prod. 361 (2022) 132268. [11] F.Y. Su, X.Y. Zhou, X.J. Liu, J. Yang, J.J. Tang, W. Yang, Z.X. Li, H. Wang, Y.Y. Ma, Efficient recovery of valuable metals from spent Lithium-ion batteries by pyrite method with hydrometallurgy process, Chem. Eng. J. 455 (2023) 140914. [12] S.P. Barik, G. Prabaharan, L. Kumar, Leaching and separation of Co and Mn from electrode materials of spent lithium-ion batteries using hydrochloric acid: Laboratory and pilot scale study, J. Clean. Prod. 147 (2017) 37-43. [13] C. Peng, F.P. Liu, Z.L. Wang, B.P. Wilson, M. Lundstrom, Selective extraction of lithium (Li) and preparation of battery grade lithium carbonate (Li2CO3) from spent Li-ion batteries in nitrate system, J. Power Sources 415 (2019) 179-188. [14] P.W. Li, S.H. Luo, L. Zhang, Y.K. Wang, H.R. Zhang, J.H. Wang, S.X. Yan, P.Q. Hou, Q. Wang, Y.H. Zhang, X. Liu, X.F. Lei, W.N. Mu, Study on efficient and synergistic leaching of valuable metals from spent lithium iron phosphate using the phosphoric acid-oxalic acid system, Sep. Purif. Technol. 303 (2022) 122247. [15] X. Xiao, B.W. Hoogendoorn, Y.Q. Ma, S. Ashoka Sahadevan, J.M. Gardner, K. Forsberg, R.T. Olsson, Ultrasound-assisted extraction of metals from Lithium-ion batteries using natural organic acids, Green Chem. 23 (21) (2021) 8519-8532. [16] L. Li, J.B. Dunn, X.X. Zhang, L. Gaines, R.J. Chen, F. Wu, K. Amine, Recovery of metals from spent lithium-ion batteries with organic acids as leaching reagents and environmental assessment, J. Power Sources 233 (2013) 180-189. [17] S.Q. Jiang, X.G. Li, W.T. Zhou, C.Z. Deng, X.N. Zhu, Enhanced green leaching of spent lithium-ion batteries: Pyrolysis pretreatment combined with eco-friendly citric acid and ascorbic acid, Colloids Surf. A Physicochem. Eng. Aspects 687 (2024) 133492.[LinkOut]. [18] G.P. Nayaka, K.V. Pai, G. Santhosh, J. Manjanna, Dissolution of cathode active material of spent Li-ion batteries using tartaric acid and ascorbic acid mixture to recover Co, Hydrometallurgy 161 (2016) 54-57. [19] Y.L. Zhang, W. Chu, X. Chen, M. Wang, H.Y. Cui, J. Wang, Recovery of rare earth metals and synthesis of Ni0.6Co0.2Mn0.2(OH)2 from spent asymmetric-capacitance power batteries, J. Clean. Prod. 235 (2019) 1295-1303. [20] L. Chen, X.C. Tang, Y. Zhang, L.X. Li, Z.W. Zeng, Y. Zhang, Process for the recovery of cobalt oxalate from spent lithium-ion batteries, Hydrometallurgy 108 (1-2) (2011) 80-86. [21] S.X. Yan, Y.D. Ou, X.P. Li, L. Yuan, X.P. Chen, T. Zhou, In situ recycling of Al foil and cathode materials from spent lithium-ion batteries through exogenous advanced oxidation, Sep. Purif. Technol. 326 (2023) 124788. [22] W. Chu, Y.L. Zhang, X. Chen, Y.G. Huang, H.Y. Cui, M. Wang, J. Wang, Synthesis of LiNi0.6Co0.2Mn0.2O2 from mixed cathode materials of spent lithium-ion batteries, J. Power Sources 449 (2020) 227567. [23] N. Raje, D.A. Aacherekar, A.V.R. Reddy, Compositional characterization of carbon electrode material: a study using simultaneous TG-DTA-FTIR, Thermochim. Acta 496 (1-2) (2009) 143-150. [24] K. Tatsumi, N. Iwashita, H. Sakaebe, H. Shioyama, S. Higuchi, A. Mabuchi, H. Fujimoto, The influence of the graphitic structure on the electrochemical characteristics for the anode of secondary lithium batteries, J. Electrochem. Soc. 142 (3)716–720. [25] J. Zhang, X.L. Li, D.W. Song, Y.L. Miao, J.S. Song, L.Q. Zhang, Effective regeneration of anode material recycled from scrapped Li-ion batteries, J. Power Sources 390 (2018) 38-44. [26] Y.Q. Li, Y. Zhou, W.L. Ma, P. Wu, X. Cao, X.S. Zhu, S.H. Wei, Y.M. Zhou, Facile fabrication of the hybrid of amorphous FePO4·2H2O and GO toward high performance sodium-ion batteries, J. Phys. Chem. Solids 176 (2023) 111243. [27] M. Khachani, A. El Hamidi, M. Kacimi, M. Halim, S. Arsalane, Kinetic approach of multi-step thermal decomposition processes of iron(III) phosphate dihydrate FePO4·2H2O, Thermochim. Acta 610 (2015) 29-36. [28] Y.C. Li, J.H. Hao, F.L. Wei, L. Fu, Y. Liu, Z.J. Wang, C.C. Yang, B.J. Li, Synthesis of Mg-LiFePO4/C composite using intermediate FePO4·2H2O from Fe3(PO4)2·8H2O as precursor via an aqueous rheological phase assisted method, J. Mater. Sci. Mater. Electron. 27 (9) (2016) 9398-9404. [29] X.P. Chen, B.L. Fan, L.P. Xu, T. Zhou, J.R. Kong, An atom-economic process for the recovery of high value-added metals from spent lithium-ion batteries, J. Clean. Prod. 112 (2016) 3562-3570. |