[1] P. Avila, M.Montes, E.E. Miró, Monolithic reactors for environmental applications: areview on preparation technologies, Chem. Eng. J. 109 (2005) 11-36.[2] V. Meille, S. Pallier, G.V. Santa Cruz Bustmanthe, R. Roumanie, J.P. Reymon, Depositionof γ-Al2O3 layers on structured supports for the design of newcatalytic reactors,Appl. Catal. A Gen. 286 (2) (2005) 232-238.[3] J.L. Williams, Monolith structures, materials, properties and uses, Catal. Today 69(2001) 3-9.[4] R.M. Heck, S. Gulati, R.J. Farrauto, The application of monoliths for gas phase catalyticreactions, Chem. Eng. J. 82 (2001) 149-156.[5] A. Bialas,W. Osuch,W. Lasocha,M. Najbar, The influence of the Cr-Al foil texture onmorphology of adhesive Al2O3 layers in monolithic environmental catalysts, Catal.Today 137 (2008) 489-492.[6] F. Liu, H. Gotlind, J.E. Svensson, L.G. Johansson, H. Halvarsson, Early stages of theoxidation of a FeCrAlRE alloy (Kanthal AF) at 900℃: A detailed microstructuralinvestigation, Corros. Sci. 50 (2008) 2272-2281.[7] H.E. Kadiri, R. Molins, Y. Bienvenu,M.F. Horstemeyer, Abnormal high growth rates ofmetastable aluminas on FeCrAl alloys, Oxid. Met. 64 (2005) 63-97.[8] J. Jedlinski, The oxidation behaviour of FeCrAl ‘alumina forming’ alloys at hightemperatures, Solid State Ionics 101-103 (Part 2) (1997) 1033-1040.[9] V.Meille, Review onmethods to deposit catalysts on structured surfaces, Appl. Catal.A Gen. 315 (2006) 1-17.[10] D. Zhang, L. Zhang, B. Liang, Y. Li, Effect of acid treatment on the high-temperaturesurface oxidation behavior of FeCrAlloy foil used for methane combustion catalystsupport, Ind. Eng. Chem. Res. 48 (2009) 5117-5122.[11] X. Wu, D. Weng, L. Xu, H. Li, Structure and performance of γ-alumina washcoatdeposited by plasma spraying, Surf. Coat. Technol. 145 (2001) 226-232.[12] D.-J. Liu, D.R. Winstead, van den BusscheN. Method of preparing a catalyst layerover a metallic surface of a recuperator, US Pat. 6540843 (2003).[13] J. Jedlinski, G.S. Kowalski, A. Bernasik, M. Nocun, J. Camra, The mechanism of earlyoxidation stages of Fe20Cr5Al-type alloys at 1123 K, Mater. High. Temp. 26 (2009)259-272.[14] E. Airiskallio, E. Nurmi, M.H. Heinonen, I.J. Vayrynen, K. Kokko, M. Ropo, M.P.J.Punkkinen, H. Pitkanen, M. Alatalo, J. Kollar, Third element effect in the surfacezone of Fe-Cr-Al alloys, Phys. Rev. B 81 (2010) 033105-033109.[15] H. Asteman, M. Spiegel, A comparison of the oxidation behaviours of Al2O3 formersand Cr2O3 formers at 700℃ — Oxide solid solutions acting as a template for nucleation,Corros. Sci. 50 (2008) 1734-1743.[16] C. Badini, F. Laurella, Oxidation of FeCrAl alloy: influence of temperature and atmosphereon scale growth rate and mechanism, Surf. Coat. Technol. 135 (2001)291-298.[17] L.R. Chapman, C.W. Vigor, J.F.Watton, Enhanced oxidewhisker growth on peeled Al/containing stainless steel foil, US Pat. 4331631 (1982).[18] D.R. Sigler, G.L. Vanerman, Acceleratedwhisker growth on iron-chromium-aluminiumalloy foil, US Pat. 4915751 (1990).[19] C. Mennicke, D.R. Clarke, M. Rühle, Stress relaxation in thermally grown aluminascales on heating and cooling FeCrAl and FeCrAlY alloys, Oxid. Met. 55 (2001)551-569.[20] D.R. Clarke, Stress generation during high-temperature oxidation of metallic alloys,Curr. Opin. Solid State Mech. 6 (2002) 237-244.[21] R. Chegroune, E. Salhi, A. Crisci, Y.Wouters, G. Galerie, On the competitive growth ofalpha and transient aluminas during the first stages of thermal oxidation of FeCrAlalloys at intermediate temperatures, Oxid. Met. 70 (2008) 331-337.[22] F. Al Humaidan, D. Tsakiris, D. Cresswell, A. Garforth, Hydrogen storage in liquid organichydride: selectivity of MCH dehydrogenation over monometallic and bimetallicPt catalysts, Int. J. Hydrogen Energy 38 (2013) 14010-14026. |