Chinese Journal of Chemical Engineering ›› 2017, Vol. 25 ›› Issue (11): 1563-1580.DOI: 10.1016/j.cjche.2017.04.015
Weidong Li1,2, Fusheng Pan1,2,3, Yimeng Song1,2, Meidi Wang1,2, Hongjian Wang1,2, Shalik Walker1,2, Hong Wu1,2,3, Zhongyi Jiang1,2,3
收稿日期:
2017-01-19
修回日期:
2017-04-26
出版日期:
2017-11-28
发布日期:
2018-01-18
通讯作者:
Zhongyi Jiang,E-mail address:zhyjiang@tju.edu.cn
基金资助:
Supported by the National Natural Science Foundation of China (21490583 and 21621004), the National Science Fund for Distinguished Young Scholars (21125627), Tianjin Application Foundation and Research in Cutting-edge Technology Plan (15JCQNJC43300), the Programme of Introducing Talents of Discipline to Universities (B06006).
Weidong Li1,2, Fusheng Pan1,2,3, Yimeng Song1,2, Meidi Wang1,2, Hongjian Wang1,2, Shalik Walker1,2, Hong Wu1,2,3, Zhongyi Jiang1,2,3
Received:
2017-01-19
Revised:
2017-04-26
Online:
2017-11-28
Published:
2018-01-18
Contact:
Zhongyi Jiang,E-mail address:zhyjiang@tju.edu.cn
Supported by:
Supported by the National Natural Science Foundation of China (21490583 and 21621004), the National Science Fund for Distinguished Young Scholars (21125627), Tianjin Application Foundation and Research in Cutting-edge Technology Plan (15JCQNJC43300), the Programme of Introducing Talents of Discipline to Universities (B06006).
摘要: Extraordinary mass transfer phenomenon is usually found when the small molecules pass through a confined structure, whose effective size is commensurate with the mean free path of the molecules. Small changes in the confined mass transfer structure (including size, morphology and properties) will lead to significant fluctuations of the mass transfer coefficient. The mass transfer of the penetrant molecules in the dense membranes for pervaporation, gas separation and so on, is located in the scope of confined mass transfer. Incorporating nanofillers into polymer matrix to construct mixed matrix membranes (MMMs) is an effective approach to tune the confined mass transfer structure and enhance the performance of the widely used polymeric membranes. This review focuses on the construction and manipulation of the confined structure in the polymeric membranes via incorporating one-dimensional (1D), two-dimensional (2D) and three-dimensional (3D) fillers. The comparison of the MMMs for pervaporation is summarized, and the research prospective of the MMMs is provided.
Weidong Li, Fusheng Pan, Yimeng Song, Meidi Wang, Hongjian Wang, Shalik Walker, Hong Wu, Zhongyi Jiang. Construction of molecule-selective mixed matrix membranes with confined mass transfer structure[J]. Chinese Journal of Chemical Engineering, 2017, 25(11): 1563-1580.
Weidong Li, Fusheng Pan, Yimeng Song, Meidi Wang, Hongjian Wang, Shalik Walker, Hong Wu, Zhongyi Jiang. Construction of molecule-selective mixed matrix membranes with confined mass transfer structure[J]. Chin.J.Chem.Eng., 2017, 25(11): 1563-1580.
[1] N.P. Xu, C.J. Gao, W.Q. Jin, Innovations of membrane science and technology in China, Eng. Sci. 16(12) (2014) 4-9.[2] H. Zhang, Y. Wang, Poly(vinylalcohol)/ZIF-8-NH2 mixed matrix membranes for ethanol dehydration via pervaporation, AIChE J. 62(5) (2016) 1728-1739.[3] D.Y. Zheng, X.Y. Liu, D. Hu, M. Li, J.M. Zhang, G.F. Zeng, Y.F. Zhang, Y.H. Sun, Synthesis and characterization of a novel type of mixed matrix membrane:Surface sieving membrane, RSC Adv. 4(20) (2014) 10140-10143.[4] Y.F. Li, G.W. He, S.F. Wang, S.N. Yu, F.S. Pan, H. Wu, Z.Y. Jiang, Recent advances in the fabrication of advanced composite membranes, J. Mater. Chem. A 1(35) (2013) 10058-10077.[5] Y.F. Li, S.F. Wang, G.W. He, H. Wu, F.S. Pan, Z.Y. Jiang, Facilitated transport of small molecules and ions for energy-efficient membranes, Chem. Soc. Rev. 44(1) (2015) 103-118.[6] V.T. Hoang, S. Kaliaguine, Predictive models for mixed-matrix membrane performance:A review, Chem. Rev. 113(7) (2013) 4980-5028.[7] P. Shao, R.Y.M. Huang, Polymeric membrane pervaporation, J. Membr. Sci. 287(2) (2007) 162-179.[8] L.Y. Jiang, Y. Wang, T.S. Chung, X.Y. Qiao, J.Y. Lai, Polyimides membranes for pervaporation and biofuels separation, Prog. Polym. Sci. 34(11) (2009) 1135-1160.[9] F. Fornasiero, H.G. Park, J.K. Holt, M. Stadermann, C.P. Grigoropoulos, A. Noy, O. Bakajin, Ion exclusion by sub-2-nm carbon nanotube pores, Proc. Natl. Acad. Sci. U. S. A. 105(45) (2008) 17250-17255.[10] J.K. Holt, H.G. Park, Y.M. Wang, M. Stadermann, A.B. Artyukhin, C.P. Grigoropoulos, A. Noy, O. Bakajin, Fast mass transport through sub-2-nanometer carbon nanotubes, Science 312(5776) (2006) 1034-1037.[11] R.R. Nair, H.A. Wu, P.N. Jayaram, I.V. Grigorieva, A.K. Geim, Unimpeded permeation of water through helium-leak-tight graphene-based membranes, Science 335(6067) (2012) 442-444.[12] R.K. Joshi, P. Carbone, F.C. Wang, V.G. Kravets, Y. Su, I.V. Grigorieva, H.A. Wu, A.K. Geim, R.R. Nair, Precise and ultrafast molecular sieving through graphene oxide membranes, Science 343(6172) (2014) 752-754.[13] L. Bocquet, E. Charlaix, Nanofluidics, from bulk to interfaces, Chem. Soc. Rev. 39(3) (2010) 1073-1095.[14] W. Sparreboom, A. van den Berg, J.C.T. Eijkel, Transport in nanofluidic systems:A review of theory and applications, New J. Phys. 12(3) (2010) 338-346.[15] Q.L. Cheng, F.S. Pan, B. Chen, Z.Y. Jiang, Preparation and dehumidification performance of composite membrane with PVA/gelatin-silica hybrid skin layer, J. Membr. Sci. 363(1-2) (2010) 316-325.[16] G. Choudalakis, A.D. Gotsis, Free volume and mass transport in polymer nanocomposites, Curr. Opin. Colloid Interface Sci. 17(3) (2012) 132-140.[17] C.L. Li, S.H. Huang, W.S. Hung, S.T. Kao, D.M. Wang, Y.C. Jean, K.R. Lee, J.Y. Lai, Study on the influence of the free volume of hybrid membrane on pervaporation performance by positron annihilation spectroscopy, J. Membr. Sci. 313(1-2) (2008) 68-74.[18] K.V. Agrawal, L.W. Drahushuk, M.S. Strano, Observation and analysis of the coulter effect through carbon nanotube and graphene nanopores, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 374(2060) (2016) 1-13.[19] W.P. Liu, Y.F. Li, X.X. Meng, G.H. Liu, S. Hu, F.S. Pan, H. Wu, Z.Y. Jiang, B.Y. Wang, Z.X. Li, X.Z. Cao, Embedding dopamine nanoaggregates into a poly(dimethylsiloxane) membrane to confer controlled interactions and free volume for enhanced separation performance, J. Mater. Chem. A 1(11) (2013) 3713-3723.[20] F.B. Peng, C.L. Hu, Z.Y. Jiang, Novel ploy(vinyl alcohol)/carbon nanotube hybrid membranes for pervaporation separation of benzene/cyclohexane mixtures, J. Membr. Sci. 297(1-2) (2007) 236-242.[21] A.F. Ismail, P.S. Goh, S.M. Sanip, M. Aziz, Transport and separation properties of carbon nanotube-mixed matrix membrane, 70(1) (2009) 12-26.[22] D.Y. Kang, H.M. Tong, J. Zang, R.P. Choudhury, D.S. Sholl, H.W. Beckham, C.W. Jones, S. Nair, Single-walled aluminosilicate nanotube/poly(vinyl alcohol) nanocomposite membranes, ACS Appl. Mater. Interfaces 4(2) (2012) 965-976.[23] R.S. Xing, F.S. Pan, J. Zhao, K.T. Cao, C.Y. Gao, S. Yang, G.H. Liu, H. Wu, Z.Y. Jiang, Enhancing the permeation selectivity of sodium alginate membrane by incorporating attapulgite nanorods for ethanol dehydration, RSC Adv. 6(17) (2016) 14381-14392.[24] B. Li, D. Xu, X.F. Zhang, Z.Y. Jiang, Y. Wang, J. Ma, X.A. Dong, H. Wu, Rubbery polymer-inorganic nanocomposite membranes:Free volume characteristics on separation property, Ind. Eng. Chem. Res. 49(24) (2010) 12444-12451.[25] N.X. Wang, S.L. Ji, G.J. Zhang, J. Li, L. Wang, Self-assembly of graphene oxide and polyelectrolyte complex nanohybrid membranes for nanofiltration and pervaporation, Chem. Eng. J. 213(2012) 318-329.[26] K.T. Cao, Z.Y. Jiang, X.S. Zhang, Y.M. Zhang, J. Zhao, R.S. Xing, S. Yang, C.Y. Gao, F.S. Pan, Highly water-selective hybrid membrane by incorporating g-C3N4 nanosheets into polymer matrix, J. Membr. Sci. 490(2015) 72-83.[27] B.X. Gao, Z.Y. Jiang, G.H. Liu, R.S. Xing, H. Wu, F.S. Pan, B.Y. Wang, X.Z. Cao, Enhanced pervaporative performance of hybrid membrane by incorporating amphiphilic carbonaceous material, J. Membr. Sci. 520(2016) 951-963.[28] D.P. Suhas, T.M. Aminabhavi, A.V. Raghu, Mixed matrix membranes of H-ZSM5-loaded poly(vinyl alcohol) used in pervaporation dehydration of alcohols:Influence of silica/alumina ratio, Polym. Eng. Sci. 54(8) (2014) 1774-1782.[29] S.D. Bhat, T.M. Aminabhavi, Novel sodium alginate composite membranes incorporated with SBA-15 molecular sieves for the pervaporation dehydration of aqueous mixtures of isopropanol and 1,4-dioxane at 30℃, Microporous Mesoporous Mater. 91(1-3) (2006) 206-214.[30] D.Q. Vu, W.J. Koros, S.J. Miller, Mixed matrix membranes using carbon molecular sieves-I. Preparation and experimental results, J. Membr. Sci. 211(2) (2003) 311-334.[31] S. Iijima, Helical microtubules of graphitic carbon, Nature 354(1991) 56-58.[32] S. Iijima, T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter, Nature 364(6430) (1993) 603-605.[33] Q. Zhao, Z.H. Gan, Q.K. Zhuang, Electrochemical sensors based on carbon nanotubes, Electroanalysis 14(23) (2002) 1609-1613.[34] P.M. Ajayan, Nanotubes from carbon, Chem. Rev. 99(99) (1999) 1787-1800.[35] V.N. Popov, Carbon nanotubes:Properties and application, Mater. Sci. Eng. R. Rep. 43(3) (2004) 61-102.[36] B.J. Hinds, N. Chopra, T. Rantell, R. Andrews, V. Gavalas, L.G. Bachas, Aligned multiwalled carbon nanotube membranes, Science 303(5654) (2004) 62-65.[37] J.H. Choi, J. Jegal, W.N. Kim, H.S. Choi, Incorporation of multiwalled carbon nanotubes into poly(vinyl alcohol) membranes for use in the pervaporation of water/ethanol mixtures, J. Appl. Polym. Sci. 111(5) (2009) 2186-2193.[38] Y. Shirazi, T. Mohammadi, Effects of CNTs content on physicochemical and pervaporation separation properties of PVA membranes, Sep. Sci. Technol. 48(5) (2013) 716-727.[39] T. Wang, Y.Y. Jiang, J.N. Shen, L.G. Wu, B. Van der Bruggen, C.Y. Dong, Preparation of Ag nanoparticles on MWCNT surface via adsorption layer reactor synthesis and its enhancement on the performance of resultant polyurethane hybrid membranes, Ind. Eng. Chem. Res. 55(4) (2016) 1043-1052.[40] C. Xue, Z.X. Wang, G.Q. Du, L.H. Fan, Y. Mu, J.G. Ren, F.W. Bai, Integration of ethanol removal using carbon nanotube (CNT)-mixed membrane and ethanol fermentation by self-flocculating yeast for antifouling ethanol recovery, Process Biochem. 51(9) (2016) 1140-1146.[41] M. Amirilargani, A. Ghadimi, M.A. Tofighy, T. Mohammadi, Effects of poly (allylamine hydrochloride) as a new functionalization agent for preparation of poly vinyl alcohol/multiwalled carbon nanotubes membranes, J. Membr. Sci. 447(2013) 315-324.[42] C.Y. Hong, Y.Z. You, C.Y. Pan, A new approach to functionalize multi-walled carbon nanotubes by the use of functional polymers, Polymer 47(12) (2006) 4300-4309.[43] S.H. Qin, D.Q. Oin, W.T. Ford, D.E. Resasco, J.E. Herrera, Polymer brushes on singlewalled carbon nanotubes by atom transfer radical polymerization of n-butyl methacrylate, J. Am. Chem. Soc. 126(1) (2004) 170-176.[44] F.B. Peng, F.S. Pan, H.L. Sun, L.Y. Lu, Z.Y. Jiang, Novel nanocomposite pervaporation membranes composed of poly(vinyl alcohol) and chitosan-wrapped carbon nanotube, J. Membr. Sci. 300(1-2) (2007) 13-19.[45] A.M. Sajjan, B.K.J. Jeevan Kumar, A.A. Kittur, M.Y. Kariduraganavar, Novel approach for the development of pervaporation membranes using sodium alginate and chitosan-wrapped multiwalled carbon nanotubes for the dehydration of isopropanol, J. Membr. Sci. 425-426(2013) 77-88.[46] Q.W. Yeang, S.H.S. Zein, A. Sulong, S.H. Tan, Comparison of the pervaporation performance of various types of carbon nanotube-based nanocomposites in the dehydration of acetone, Sep. Purif. Technol. 107(2013) 252-263.[47] M. Amirilargani, M.A. Tofighy, T. Mohammadi, B. Sadatnia, Novel poly(vinyl alcohol)/multiwalled carbon nanotube nanocomposite membranes for pervaporation dehydration of isopropanol:Poly(sodium 4-styrenesulfonate) as a functionalization agent, Ind. Eng. Chem. Res. 53(32) (2014) 12819-12829.[48] B.X. Gao, Z.Y. Jiang, C.H. Zhao, H. Gomaa, F.S. Pan, Enhanced pervaporative performance of hybrid membranes containing Fe3O4@CNT nanofillers, J. Membr. Sci. 492(2015) 230-241.[49] Z.Q. Zhang, B. Liu, Y.L. Chen, H. Jiang, K.C. Hwang, Y. Huang, Mechanical properties of functionalized carbon nanotubes, Nanotechnology 19(39) (2008) 395702.[50] S. Panahian, A. Raisi, A. Aroujalian, Multi layer mixed matrix membranes containing modified-MWCNTs for dehydration of alcohol by pervaporation process, Desalination 355(2015) 45-55.[51] Y. Shirazi, M.A. Tofighy, T. Mohammadi, Synthesis and characterization of carbon nanotubes/poly vinyl alcohol nanocomposite membranes for dehydration of isopropanol, J. Membr. Sci. 378(2011) 551-561.[52] D. Sieffert, C. Staudt, Preparation of hybrid materials containing copolyimides covalently linked with carbon nanotubes, Sep. Purif. Technol. 77(1) (2011) 99-103.[53] T. Wang, L. Zhao, Y.F. Chen, L.F. Ding, S. Feng, L.G. Wu, Y.X. Wang, Influence of modification of MWCNTs on the structure and performance of MWCNT-poly (MMAAM) hybrid membranes, Polym. Adv. Technol. 25(3) (2014) 288-293.[54] J.N. Shen, Y.X. Chu, H.M. Ruan, L.G. Wu, C.J. Gao, B. Van der Bruggen, Pervaporation of benzene/cyclohexane mixtures through mixed matrix membranes of chitosan and Ag+/carbon nanotubes, J. Membr. Sci. 462(2014) 160-169.[55] S.W. Kim, T. Kim, Y.S. Kim, H.S. Choi, H.J. Lim, S.J. Yang, C.R. Park, Surface modifications for the effective dispersion of carbon nanotubes in solvents and polymers, Carbon 50(1) (2012) 3-33.[56] W.L. Haden, I.A. Schwint, Attapulgite:Its properties and applications, Ind. Eng. Chem. 59(9) (1967) 58-69.[57] R. Giustetto, R. Compagnoni, An unusual occurrence of palygorskite from Montestrutto, Sesia-Lanzo zone, internal Western Alps (Italy), Clay Miner. 46(3) (2011) 371-385.[58] A. Mcdonald, B. Scott, G. Villemure, Hydrothermal preparation of nanotubular particles of a 1:1 nickel phyllosilicate, Microporous Mesoporous Mater. 120(3) (2009) 263-266.[59] S. Mukherjee, V.A. Bartlow, S. Nair, Phenomenology of the growth of single-walled aluminosilicate and aluminogermanate nanotubes of precise dimensions, Chem. Mater. 17(20) (2005) 4900-4909.[60] D.Y. Kang, J. Zang, E.R. Wright, A.L. McCanna, C.W. Jones, S. Nair, Dehydration, dehydroxylation, and rehydroxylation of single-walled aluminosilicate nanotubes, ACS Nano 4(8) (2010) 4897-4907.[61] S. Konduri, H.M. Tong, S. Chempath, S. Nair, Water in single-walled aluminosilicate nanotubes:Diffusion and adsorption properties, J. Phys. Chem. C 112(39) (2008) 15367-15374.[62] D.Y. Kang, J. Zang, C.W. Jones, S. Nair, Single-walled aluminosilicate nanotubes with organic-modified interiors, J. Phys. Chem. C 115(15) (2011) 7676-7685.[63] N. Grossiord, J. Loos, O. Regev, C.E. Koning, Toolbox for dispersing carbon nanotubes into polymers to get conductive nanocomposites, Chem. Mater. 18(5) (2006) 1089-1099.[64] H. Li, Z.N. Song, X.J. Zhang, Y. Huang, S.G. Li, Y.T. Mao, H. Ploehn, Y. Bao, M. Yu, Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation, Science 342(6154) (2013) 95-98.[65] H. He, J. Klinowski, M. Forster, A. Lerf, A new structural model for graphite oxide, Chem. Phys. Lett. 287(1) (1998) 53-56.[66] C.H. Tsou, Q.F. An, S.C. Lo, M. De Guzman, W.S. Hung, C.C. Hu, K.R. Lee, J.Y. Lai, Effect of microstructure of graphene oxide fabricated through different self-assembly techniques on 1-butanol dehydration, J. Membr. Sci. 477(2015) 93-100.[67] Y.P. Tang, D.R. Paul, T.S. Chung, Free-standing graphene oxide thin films assembled by a pressurized ultrafiltration method for dehydration of ethanol, J. Membr. Sci. 458(2014) 199-208.[68] J. Zhao, Y.W. Zhu, F.S. Pan, G.W. He, C.H. Fang, K.T. Cao, R.S. Xing, Z.Y. Jiang, Fabricating graphene oxide-based ultrathin hybrid membrane for pervaporation dehydration via layer-by-layer self-assembly driven by multiple interactions, J. Membr. Sci. 487(2015) 162-172.[69] K. Huang, G.P. Liu, J. Shen, Z.Y. Chu, H.L. Zhou, X.H. Gu, W.Q. Jin, N.P. Xu, Highefficiency water-transport channels using the synergistic effect of a hydrophilic polymer and graphene oxide laminates, Adv. Funct. Mater. 25(36) (2015) 5809-5815.[70] J. Shen, G.P. Liu, K. Huang, W.Q. Jin, K. Lee, N.P. Xu, Membranes with fast and selective gas-transport channels of laminar graphene oxide for efficient CO2 capture, Angew. Chem. Int. Ed. 127(2) (2015) 588-592.[71] K.T. Cao, Z.Y. Jiang, J. Zhao, C.H. Zhao, C.Y. Gao, F.S. Pan, B.Y. Wang, X.Z. Cao, J. Yang, Enhanced water permeation through sodium alginate membranes by incorporating graphene oxides, J. Membr. Sci. 469(2014) 272-283.[72] J. Zhao, Y.W. Zhu, G.W. He, R.S. Xing, F.S. Pan, Z.Y. Jiang, P. Zhang, X.Z. Cao, B.Y. Wang, Incorporating zwitterionic graphene oxides into sodium alginate membrane for efficient water/alcohol separation, ACS Appl. Mater. Interfaces 8(3) (2016) 2097-2103.[73] E. Mahmoudi, L.Y. Ng, M.M. Ba-Abbad, A.W. Mohammad, Novel nanohybrid polysulfone membrane embedded with silver nanoparticles on graphene oxide nanoplates, Chem. Eng. J. 277(2015) 1-10.[74] B.V. Lotsch, M. Döblinger, J. Sehnert, L. Seyfarth, J. Senker, O. Oeckler, W. Schnick, Unmasking melon by a complementary approach employing electron diffraction, solid-state NMR spectroscopy, and theoretical calculations-structural characterization of a carbon nitride polymer, Chem. Eur. J. 13(17) (2007) 4969-4980.[75] B. Jürgens, E. Irran, J. Senker, P. Kroll, H. Müller, W. Schnick, Melem (2, 5, 8-triamino-tri-s-triazine), an important intermediate during condensation of melamine rings to graphitic carbon nitride:Synthesis, structure determination by X-ray powder diffractometry, solid-state NMR, and theoretical studies, J. Am. Chem. Soc. 125(34) (2003) 10288-10300.[76] J.E. Huheey, E.A. Keiter, R.L. Keiter, O.K. Medhi, Inorganic Chemistry:Principles of Structure and Reactivity, fourth ed. Pearson Education, India, 2006.[77] X. Zhang, Z.C. Lai, C.L. Tan, H. Zhang, Solution-processed two-dimensional MoS2 nanosheets:Preparation, hybridization, and applications, Angew. Chem. Int. Ed. 55(31) (2016) 8816-8838.[78] S.K. Choudhari, F. Cerrone, T. Woods, K. Joyce, V. O'Flaherty, K. O'Connor, R. Babu, Pervaporation separation of butyric acid from aqueous and anaerobic digestion (AD) solutions using PEBA based composite membranes, J. Ind. Eng. Chem. 23(2015) 163-170.[79] L.W. Sun, H.B. Huang, X.S. Peng, Laminar MoS2 membranes for molecule separation, Chem. Commun. 49(91) (2013) 10718-10720.[80] A.K. Cheetham, C.N.R. Rao, R.K. Feller, Structural diversity and chemical trends in hybrid inorganic-organic framework materials, Chem. Commun. 46(2006) 4780-4795.[81] S.Y. Ding, W. Wang, Covalent organic frameworks (COFs):From design to applications, Chem. Soc. Rev. 42(2) (2013) 548-568.[82] G.H. Liu, Z.Y. Jiang, K.T. Cao, S.K. Nair, X.X. Cheng, J. Zhao, H. Gomaa, H. Wu, F.S. Pan, Pervaporation performance comparison of hybrid membranes filled with two-dimensional ZIF-L nanosheets and zero-dimensional ZIF-8 nanoparticles, J. Membr. Sci. 523(2017) 185-196.[83] Z.X. Kang, Y.W. Peng, Y.H. Qian, D.Q. Yuan, M.A. Addicoat, T. Heine, Z.G. Hu, L. Tee, Z.G. Guo, D. Zhao, Mixed matrix membranes (MMMs) comprising exfoliated 2D covalent organic frameworks (COFs) for efficient CO2 separation, Chem. Mater. 28(5) (2016) 1277-1285.[84] O.M. Yaghi, G.M. Li, H.L. Li, Selective binding and removal of guests in a microporous metal-organic framework, Nature 378(6558) (1995) 703-706.[85] G. Majano, J. Perez-Ramirez, Scalable room-temperature conversion of copper(Ⅱ) hydroxide into HKUST-1(Cu3(btc)2), Adv. Mater. 25(7) (2013) 1052-1057.[86] C.X. Yang, H.B. Ren, X.P. Yan, Fluorescent metal organic framework MIL-53(Al) for highly selective and sensitive detection of Fe3+ in aqueous solution, Anal. Chem. 85(15) (2013) 7441-7446.[87] Z.Q. Jia, G.R. Wu, Metal-organic frameworks based mixed matrix membranes for pervaporation, Microporous Mesoporous Mater. 235(2016) 151-159.[88] S. Takamizawa, C. Kachi-Terajima, M.A. Kohbara, T. Akatsuka, T. Jin, Alcohol-vapor inclusion in single-crystal adsorbents[M2Ⅱ(bza)4(pyz)]n (M=Rh, Cu):Structural study and application to separation membranes, Chem.-Asian J. 2(7) (2007) 837-848.[89] W.B. Li, Y.F. Zhang, Q.B.A. Li, G.L. Zhang, Metal-organic framework composite membranes:Synthesis and separation applications, Chem. Eng. Sci. 135(2015) 232-257.[90] A. Phan, C.J. Doonan, F.J. Uribe-Romo, C.B. Knobler, M. O'Keeffe, O.M. Yaghi, Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks, Acc. Chem. Res. 43(1) (2010) 58-67.[91] B. Wang, A.P. Cote, H. Furukawa, M. O'Keeffe, O.M. Yaghi, Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs, Nature 453(7192) (2008) 207-211.[92] K.S. Park, Z. Ni, A.P. Cote, J.Y. Choi, R.D. Huang, F.J. Uribe-Romo, H.K. Chae, M. O'Keeffe, O.M. Yaghi, Exceptional chemical and thermal stability of zeolitic imidazolate frameworks, Proc. Natl. Acad. Sci. U. S. A. 103(27) (2006) 10186-10191.[93] X.L. Liu, Y.S. Li, G.Q. Zhu, Y.J. Ban, L.Y. Xu, W.S. Yang, An organophilic pervaporation membrane derived from metal-organic framework nanoparticles for efficient recovery of bio-alcohols, Angew. Chem. Int. Ed. 50(45) (2011) 10636-10639.[94] L.H. Wee, Y.B. Li, K. Zhang, P. Davit, S. Bordiga, J.W. Jiang, I.F.J. Vankelecom, J.A. Martens, Submicrometer-sized ZIF-71 filled organophilic membranes for improved bioethanol recovery:Mechanistic insights by Monte Carlo simulation and FTIR spectroscopy, Adv. Funct. Mater. 25(4) (2015) 516-525.[95] H.K. Chae, D.Y. Siberio-Perez, J. Kim, Y. Go, M. Eddaoudi, A.J. Matzger, M. O'Keeffe, O.M. Yaghi, A route to high surface area, porosity and inclusion of large molecules in crystals, Nature 427(6974) (2004) 523-527.[96] Y.X. Bai, L.L. Dong, C.F. Zhang, J. Gu, Y.P. Sun, L. Zhang, H.L. Chen, ZIF-8 filled polydimethylsiloxane membranes for pervaporative separation of n-butanol from aqueous solution, Sep. Sci. Technol. 48(17) (2013) 2531-2539.[97] J. Li, N.X. Wang, H. Yan, S.L. Ji, G.J. Zhang, Designing superhydrophobic surfaces with SAM modification on hierarchical ZIF-8/polymer hybrid membranes for efficient bioalcohol pervaporation, RSC Adv. 4(104) (2014) 59750-59753.[98] H.W. Fan, N.X. Wang, S.L. Ji, H. Yan, G.J. Zhang, Nanodisperse ZIF-8/PDMS hybrid membranes for biobutanol permselective pervaporation, J. Mater. Chem. A 2(48) (2014) 20947-20957.[99] X.L. Liu, H. Jin, Y.S. Li, H. Bux, Z.Y. Hu, Y.J. Ban, W.S. Yang, Metal-organic framework ZIF-8 nanocomposite membrane for efficient recovery of furfural via pervaporation and vapor permeation, J. Membr. Sci. 428(2013) 498-506.[100] C. Ding, X.R. Zhang, C.C. Li, X.G. Hao, Y.H. Wang, G.Q. Guan, ZIF-8 incorporated polyether block amide membrane for phenol permselective pervaporation with high efficiency, Sep. Purif. Technol. 166(2016) 252-261.[101] G.M. Shi, T.X. Yang, T.S. Chung, Polybenzimidazole (PBI)/zeolitic imidazolate frameworks (ZIF-8) mixed matrix membranes for pervaporation dehydration of alcohols, J. Membr. Sci. 415(2012) 577-586.[102] G.M. Shi, H.M. Chen, Y.C. Jean, T.S. Chung, Sorption, swelling, and free volume of polybenzimidazole (PBI) and PBI/zeolitic imidazolate framework (ZIF-8) nanocomposite membranes for pervaporation, Polymer 54(2) (2013) 774-783.[103] M. Amirilargani, B. Sadatnia, Poly(vinyl alcohol)/zeolitic imidazolate frameworks (ZIF-8) mixed matrix membranes for pervaporation dehydration of isopropanol, J. Membr. Sci. 469(2014) 1-10.[104] Y.B. Li, L.H. Wee, J.A. Martens, I.F.J. Vankelecom, ZIF-71 as a potential filler to prepare pervaporation membranes for bio-alcohol recovery, J. Mater. Chem. A 2(26) (2014) 10034-10040.[105] S.N. Liu, G.P. Liu, X.H. Zhao, W.Q. Jin, Hydrophobic-ZIF-71 filled PEBA mixed matrix membranes for recovery of biobutanol via pervaporation, J. Membr. Sci. 446(2013) 181-188.[106] D. Hua, Y.K. Ong, Y. Wang, T.X. Yang, T.S. Chung, ZIF-90/P84 mixed matrix membranes for pervaporation dehydration of isopropanol, J. Membr. Sci. 453(2014) 155-167.[107] C.H. Kang, Y.F. Lin, Y.S. Huang, K.L. Tung, K.S. Chang, J.T. Chen, W.S. Hung, K.R. Lee, J.Y. Lai, Synthesis of ZIF-7/chitosan mixed-matrix membranes with improved separation performance of water/ethanol mixtures, J. Membr. Sci. 438(2013) 105-111.[108] Y.P. Ying, Y.L. Xiao, J. Ma, X.Y. Guo, H.L. Huang, Q.Y. Yang, D.H. Liu, C.L. Zhong, Recovery of acetone from aqueous solution by ZIF-7/PDMS mixed matrix membranes, RSC Adv. 5(36) (2015) 28394-28400.[109] X.L. Wang, J.X. Chen, M.Q. Fang, T. Wang, L.X. Yu, J.D. Li, ZIF-7/PDMS mixed matrix membranes for pervaporation recovery of butanol from aqueous solution, Sep. Purif. Technol. 163(2016) 39-47.[110] Y.C. Sue, J.W. Wu, S.E. Chung, C.H. Kang, K.L. Tung, K.C.W. Wu, F.K. Shieh, Synthesis of hierarchical micro/mesoporous structures via solid-aqueous interface growth:Zeolitic imidazolate framework-8 on siliceous mesocellular foams for enhanced pervaporation of water/ethanol mixtures, ACS Appl. Mater. Interfaces 6(7) (2014) 5192-5198.[111] P.V. Naik, L.H. Wee, M. Meledina, S. Turner, Y.B. Li, G. Van Tendeloo, J.A. Martens, I.F.J. Vankelecom, PDMS membranes containing ZIF-coated mesoporous silica spheres for efficient ethanol recovery via pervaporation, J. Mater. Chem. A 4(33) (2016) 12790-12798.[112] G. Ferey, C. Mellot-Draznieks, C. Serre, F. Millange, J. Dutour, S. Surble, I. Margiolaki, A chromium terephthalate-based solid with unusually large pore volumes and surface area, Science 309(5743) (2005) 2040-2042.[113] N.C. Burtch, H. Jasuja, K.S. Walton, Water stability and adsorption in metal-organic frameworks, Chem. Rev. 114(20) (2014) 10575-10612.[114] S.N. Yu, F.S. Pan, S. Yang, H. Ding, Z.Y. Jiang, B.Y. Wang, Z.X. Li, X.Z. Cao, Enhanced pervaporation performance of MIL-101(Cr) filled polysiloxane hybrid membranes in desulfurization of model gasoline, Chem. Eng. Sci. 135(2015) 479-488.[115] G.J. Zhang, J. Li, N.X. Wang, H.W. Fan, R. Zhang, G.J. Zhang, S.L. Ji, Enhanced flux of polydimethylsiloxane membrane for ethanol permselective pervaporation via incorporation of MIL-53 particles, J. Membr. Sci. 492(2015) 322-330.[116] T. Ahnfeldt, D. Gunzelmann, T. Loiseau, D. Hirsemann, J. Senker, G. Ferey, N. Stock, Synthesis and modification of a functionalized 3D open-framework structure with MIL-53 topology, Inorg. Chem. 48(7) (2009) 3057-3064.[117] S. Couck, J.F.M. Denayer, G.V. Baron, T. Remy, J. Gascon, F. Kapteijn, An aminefunctionalized MIL-53 metal-organic framework with large separation power for CO2 and CH4, J. Am. Chem. Soc. 131(18) (2009) 6326.[118] J. Gascon, U. Aktay, M.D. Hernandez-Alonso, G.P.M. van Klink, F. Kapteijn, Aminobased metal-organic frameworks as stable, highly active basic catalysts, J. Catal. 261(1) (2009) 75-87.[119] G.R. Wu, M.C. Jiang, T.T. Zhang, Z.Q. Jia, Tunable pervaporation performance of modified MIL-53(Al)-NH2/poly(vinyl alcohol) mixed matrix membranes, J. Membr. Sci. 507(2016) 72-80.[120] S.S.Y. Chui, S.M.F. Lo, J.P.H. Charmant, A.G. Orpen, I.D. Williams, A chemically functionalizable nanoporous material[Cu3(TMA)2(H2O)3] n, Science 283(5405) (1999) 1148-1150.[121] B. Zornoza, C. Tellez, J. Coronas, J. Gascon, F. Kapteijn, Metal organic framework based mixed matrix membranes:An increasingly important field of research with a large application potential, Microporous Mesoporous Mater. 166(2013) 67-78.[122] G.L. Han, K. Zhou, A.N. Lai, Q.G. Zhang, A.M. Zhu, Q.L. Liu,[Cu2(bdc)2(bpy)]n/SPES-C mixed matrix membranes for separation of methanol/methyl tert-butyl ether mixtures, J. Membr. Sci. 454(2014) 36-43.[123] Y. Zhang, N.X. Wang, S.L. Ji, R. Zhang, C. Zhao, J.R. Li, Metal-organic framework/poly(vinyl alcohol) nanohybrid membrane for the pervaporation of toluene/n-heptane mixtures, J. Membr. Sci. 489(2015) 144-152.[124] S.N. Yu, Z.Y. Jiang, H. Ding, F.S. Pan, B.Y. Wang, J. Yang, X.Z. Cao, Elevated pervaporation performance of polysiloxane membrane using channels and active sites of metal organic framework CuBTC, J. Membr. Sci. 481(2015) 73-81.[125] F.J. Uribe-Romo, J.R. Hunt, H. Furukawa, C. Klock, M. O'Keeffe, O.M. Yaghi, A crystalline imine-linked 3-D porous covalent organic framework, J. Am. Chem. Soc. 131(13) (2009) 4570-4571.[126] H.M. El-Kaderi, J.R. Hunt, J.L. Mendoza-Cortes, A.P. Cote, R.E. Taylor, M. O'Keeffe, O.M. Yaghi, Designed synthesis of 3D covalent organic frameworks, Science 316(5822) (2007) 268-272.[127] X. Feng, X.S. Ding, D.L. Jiang, Covalent organic frameworks, Chem. Soc. Rev. 41(18) (2012) 6010-6022.[128] H. Yang, H. Wu, F.S. Pan, Z. Li, H. Ding, G.H. Liu, Z.Y. Jiang, P. Zhang, X.Z. Cao, B.Y. Wang, Highly water-permeable and stable hybrid membrane with asymmetric covalent organic framework distribution, J. Membr. Sci. 520(2016) 583-595.[129] M.G. Schwab, B. Fassbender, H.W. Spiess, A. Thomas, X.L. Feng, K. Muellen, Catalyst-free preparation of melamine-based microporous polymer networks through Schiff base chemistry, J. Am. Chem. Soc. 131(21) (2009) 7216-7217.[130] V. Nafisi, M.B. Hägg, Development of dual layer of ZIF-8/PEBAX-2533 mixed matrix membrane for CO2 capture, J. Membr. Sci. 459(2014) 244-255.[131] J.K. Sang, W.S. Chi, H. Jeon, J.H. Kim, R. Patel, Spontaneously self-assembled duallayer mixed matrix membranes containing mass-produced mesoporous TiO2 for CO2 capture, J. Membr. Sci. 508(2016) 62-72.[132] R. Konietzny, T. Koschine, K. Raetzke, C. Staudt, POSS-hybrid membranes for the removal of sulfur aromatics by pervaporation, Sep. Purif. Technol. 123(2014) 175-182.[133] G. Tishchenko, M. Bleha, Diffusion permeability of hybrid chitosan/polyhedral oligomeric silsesquioxanes (POSSTM) membranes to amino acids, J. Membr. Sci. 248(1-2) (2005) 45-51.[134] Q.G. Zhang, B.C. Fan, Q.L. Liu, A.M. Zhu, F.F. Shi, A novel poly(dimethyl siloxane)/poly(oligosilsesquioxanes) composite membrane for pervaporation desulfurization, J. Membr. Sci. 366(2011) 335-341.[135] D. Xu, L.S. Loo, K. Wang, Pervaporation performance of novel chitosan-POSS hybrid membranes:Effects of POSS and operating conditions, J. Polym. Sci. B Polym. Phys. 48(21) (2010) 2185-2192.[136] N.L. Le, Y. Wang, T.S. Chung, Pebax/POSS mixed matrix membranes for ethanol recovery from aqueous solutions via pervaporation, J. Membr. Sci. 379(2011) 174-183.[137] G.P. Liu, W.S. Hung, J. Shen, Q.Q. Li, Y.H. Huang, W.Q. Jin, K.R. Lee, J.Y. Lai, Mixed matrix membranes with molecular-interaction-driven tunable free volumes for efficient bio-fuel recovery, J. Mater. Chem. A 3(8) (2015) 4510-4521.[138] Y.K. Ong, G.M. Shi, N.L. Le, Y.P. Tang, J. Zuo, S.P. Nunes, T.S. Chung, Recent membrane development for pervaporation processes, Prog. Polym. Sci. 57(2016) 1-31.[139] T. Wang, J.N. Shen, L.G. Wu, B. Van der Bruggen, Improvement in the permeation performance of hybrid membranes by the incorporation of functional multiwalled carbon nanotubes, J. Membr. Sci. 466(2014) 338-347.[140] A.V. Penkova, Z. Pientka, G.A. Polotskaya, MWCNT/poly(phenylene isophtalamide) nanocomposite membranes for pervaporation of organic mixtures, Fullerenes, Nanotubes, Carbon Nanostruct. 19(1-2) (2011) 137-140.[141] S.N. Yu, Z.Y. Jiang, S. Yang, H. Ding, B.F. Zhou, K. Gu, D. Yang, F.S. Pan, B.Y. Wang, S. Wang, X.Z. Cao, Highly swelling resistant membranes for model gasoline desulfurization, J. Membr. Sci. 514(2016) 440-449.[142] N.X. Wang, S.L. Ji, J. Li, R. Zhang, G.J. Zhang, Poly(vinyl alcohol)-graphene oxide nanohybrid "pore-filling" membrane for pervaporation of toluenein-heptane mixtures, J. Membr. Sci. 455(2014) 113-120.[143] H. Yan, J. Li, H.W. Fan, S.L. Ji, G.J. Zhang, Z.G. Zhang, Sonication-enhanced in situ assembly of organic/inorganic hybrid membranes:Evolution of nanoparticle distribution and pervaporation performance, J. Membr. Sci. 481(2015) 94-105.[144] N.X. Wang, G.X. Shi, J. Gao, J. Li, L. Wang, H.X. Guo, G.J. Zhang, S.L. Ji, MCM-41@ZIF-8/PDMS hybrid membranes with micro-and nanoscaled hierarchical structure for alcohol permselective pervaporation, Sep. Purif. Technol. 153(2015) 146-155.[145] S. Sorribas, A. Kudasheva, E. Almendro, B. Zornoza, O. de la Iglesia, C. Tellez, J. Coronas, Pervaporation and membrane reactor performance of polyimide based mixed matrix membranes containing MOF HKUST-1, Chem. Eng. Sci. 124(2015) 37-44.[146] S. Qiu, L.G. Wu, G.Z. Shi, L. Zhang, H.L. Chen, C.J. Gao, Preparation and pervaporation property of chitosan membrane with functionalized multiwalled carbon nanotubes, Ind. Eng. Chem. Res. 49(22) (2010) 11667-11675.[147] J.H. Choi, J. Jegal, W.N. Kim, Modification of performances of various membranes using MWNTs as a modifier, Macromol. Symp. 249(2007) 610-617.[148] H. Sudhakar, K.C. Rao, S. Sridhar, Effect of multi-walled carbon nanotubes on pervaporation characteristics of chitosan membrane, Des. Monomers Polym. 13(3) (2010) 287-299.[149] C. Xue, G.Q. Du, L.J. Chen, J.G. Ren, J.X. Sun, F.W. Bai, S.T. Yang, A carbon nanotube filled polydimethylsiloxane hybrid membrane for enhanced butanol recovery, Sci. Rep. 4(2014) 7.[150] S.P. Dharupaneedi, R.V. Anjanapura, J.M. Han, T.M. Aminabhavi, Functionalized graphene sheets embedded in chitosan nanocomposite membranes for ethanol and isopropanol dehydration via pervaporation, Ind. Eng. Chem. Res. 53(37) (2014) 14474-14484.[151] D.P. Suhas, T.M. Aminabhavi, H.M. Jeong, A.V. Raghu, Hydrogen peroxide treated graphene as an effective nanosheet filler for separation application, RSC Adv. 5(122) (2015) 100984-100995.[152] S. Gahlot, P.P. Sharma, B.M. Bhil, H. Gupta, V. Kulshrestha, GO/SGO based SPES composite membranes for the removal of water by pervaporation separation, Macromol. Symp. 357(1) (2015) 189-193.[153] D.P. Suhas, A.V. Raghu, H.M. Jeong, T.M. Aminabhavi, Graphene-loaded sodium alginate nanocomposite membranes with enhanced isopropanol dehydration performance via a pervaporation technique, RSC Adv. 3(38) (2013) 17120-17130.[154] Z.B. Su, J.H. Chen, X. Sun, Y.H. Huang, X.F. Dong, Amine-functionalized metal organic framework (NH2-MIL-125(Ti)) incorporated sodium alginate mixed matrix membranes for dehydration of acetic acid by pervaporation, RSC Adv. 5(120) (2015) 99008-99017. |
[1] | Pan Wang, Mengdei Zhou, Zhuangxin Wei, Lu Liu, Tao Cheng, Xiaohua Tian, Jianming Pan. Preparation of bowl-shaped polydopamine surface imprinted polymer composite adsorbent for specific separation of 2′-deoxyadenosine[J]. 中国化学工程学报, 2023, 60(8): 69-79. |
[2] | Xinxin Li, Hongwei Shao, Shichao Zhang, Yong Li, Jingjing Gu, Qiang Huang, Jin Ran. Two dimensional MoS2 finding its way towards constructing high-performance alkaline recovery membranes[J]. 中国化学工程学报, 2023, 60(8): 155-164. |
[3] | Wenwen Zhang, Zhigang Xue, Liyun Cui, Haoliang Gao, Di Zhao, Rongfei Zhou, Weihong Xing. Synthesis of an IMF zeolite membrane for the separation of xylene isomer[J]. 中国化学工程学报, 2023, 60(8): 205-211. |
[4] | Hammad Saulat, Jianhua Yang, Tao Yan, Waseem Raza, Wensen Song, Gaohong He. Tungsten incorporated mobil-type eleven zeolite membranes: Facile synthesis and tuneable wettability for highly efficient separation of oil/water mixtures[J]. 中国化学工程学报, 2023, 60(8): 242-252. |
[5] | Yuan Liu, Hanting Xiong, Jingwen Chen, Shixia Chen, Zhenyu Zhou, Zheling Zeng, Shuguang Deng, Jun Wang. One-step ethylene separation from ternary C2 hydrocarbon mixture with a robust zirconium metal-organic framework[J]. 中国化学工程学报, 2023, 59(7): 9-15. |
[6] | Borui Liu, Tao Zhang, Yi Zheng, Kailong Li, Hui Pan, Hao Ling. A dynamic control structure of liquid-only transfer stream distillation column[J]. 中国化学工程学报, 2023, 59(7): 135-145. |
[7] | Meihua Zhu, Xingguo An, Tian Gui, Ting Wu, Yuqin Li, Xiangshu Chen. Effects of ion-exchange on the pervaporation performance and microstructure of NaY zeolite membrane[J]. 中国化学工程学报, 2023, 59(7): 176-181. |
[8] | Yafei Su, Xuke Zhang, Hui Li, Donglai Peng, Yatao Zhang. In-situ incorporation of halloysite nanotubes with 2D zeolitic imidazolate framework-L based membrane for dye/salt separation[J]. 中国化学工程学报, 2023, 58(6): 103-111. |
[9] | Shuangtai Liu, Lei He, Qiuxiang Yao, Xi Li, Linyang Wang, Jing Wang, Ming Sun, Xiaoxun Ma. Separation and analysis of six fractions in low temperature coal tar by column chromatography[J]. 中国化学工程学报, 2023, 58(6): 256-265. |
[10] | Wende Tian, Jiawei Zhang, Zhe Cui, Haoran Zhang, Bin Liu. Microscopic mechanism study and process optimization of dimethyl carbonate production coupled biomass chemical looping gasification system[J]. 中国化学工程学报, 2023, 58(6): 291-305. |
[11] | Hui Yi Leong, Xiao-Qian Fu, Xiang-Yu Liu, Shan-Jing Yao, Dong-Qiang Lin. Characterisation and separation of infectious bursal disease virus-like particles using aqueous two-phase systems[J]. 中国化学工程学报, 2023, 57(5): 72-78. |
[12] | Yujia Cui, Zhiqiang Tan, Yanan Wang, Shuxian Shi, Xiaonong Chen. One-step crosslinking preparation of tannic acid particles for the adsorption and separation of cationic dyes[J]. 中国化学工程学报, 2023, 57(5): 309-318. |
[13] | Xingzhong Li, Kunlin Yu, Zibo He, Bo Liu, Rongfei Zhou, Weihong Xing. Improved SSZ-13 thin membranes fabricated by seeded-gel approach for efficient CO2 capture[J]. 中国化学工程学报, 2023, 56(4): 273-280. |
[14] | Wufeng Wu, Xilu Hong, Jiang Fan, Yanying Wei, Haihui Wang. Research progress on the substrate for metal–organic framework (MOF) membrane growth for separation[J]. 中国化学工程学报, 2023, 56(4): 299-313. |
[15] | Taoyan Mao, Runhui Xiao, Peng Liu, Jiale Chen, Junqiang Luo, Su Luo, Fengwei Xie, Cheng Zheng. Facile fabrication of durable superhydrophobic fabrics by silicon polyurethane membrane for oil/water separation[J]. 中国化学工程学报, 2023, 55(3): 73-83. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||