[1] H. Lee, I. Park, I. Mudawar, M.M. Hasah, Micro-channel evaporator for space applications — 1. Experimental pressure drop and heat transfer results for different orientations in earth gravity, Int. J. Heat Mass Transf. 77 (2014) 1213-1230.[2] S.U.S. Choi, J.A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles, ASME International Mechanical Engineering Congress & Exposition, 11, 1995, pp. 99-105.[3] S.S. Bi, K. Guo, Z.G. Liu, J.T. Wu, Performance of a domestic refrigerator using TiO2- R600a nanorefrigerant as working fluid, Energy Convers. Manag. 52 (1) (2011) 733-737.[4] T. Perarasu,M. Arivazhagan, P. Sivashanmugam, Experimental and CFD heat transfer studies of Al2O3-water nanofluid in a coiled agitated vessel equippedwith propeller, Chin. J. Chem. Eng. 21 (11) (2013) 1232-1243.[5] S.M. Lu, M. Xing, Y. Sun, X.J. Dong, Experimental and theoretical studies of CO2 absorption enhancement by nano-Al2O3 and carbon nanotube particles, Chin. J. Chem. Eng. 21 (9) (2013) 983-990.[6] S. Parvin, M.A. Alim, N.F. Hossain, Prandtl number effect on cooling performance of a heated cylinder in an enclosure filled with nanofluid, Int. Commun. Heat Mass Transfer 39 (8) (2012) 1220-1225.[7] S.W. Lee, K.M. Kim, I.C. Bang, Study on flow boiling critical heat flux enhancement of graphene oxide/water nanofluid, Int. J. Heat Mass Transf. 65 (2013) 348-356.[8] S. Vafaei, D.S. Wen, Critical heat flux of nanofluids inside a single microchannel: Experiments and correlations, Chem. Eng. Res. Des. 92 (11) (2014) 2339-2351.[9] R. Kamatchi, S. Venkatachalapathy, Parametric study of pool boiling heat transfer with nanofluids for the enhancement of critical heat flux: A review, Int. J. Therm. Sci. 87 (2015) 228-240.[10] Alawi, N.A.C. Sidik, M.H. Beriache, Applications of nanorefrigerant and nanolubricants in refrigeration, air-conditioning and heat pump systems: A review, Int. Commun. Heat Mass Transfer 68 (2015) 91-97.[11] W.T. Jiang, G.L. Ding, H. Peng, Y.F. Gao, K.J.Wang, Experimental and model research on nanorefrigerant thermal conductivity, HVAC&R Res. 15 (2009) 651-669.[12] D.S. Wen, Influence of nanoparticles on boiling heat transfer, Appl. Therm. Eng. 41 (2012) 2-9.[13] R. Saidura, S.N. Kazia, M.S. Hossaina, M.M. Rahmanb, H.A. Mohammed, A review on the performance of nanoparticles suspendedwith refrigerants and lubricating oils in refrigeration systems, Renew. Sust. Energ. Rev. 15 (1) (2011) 310-323.[14] M.S. Patil, S.C. Kim, J.H. Seo, M.Y. Lee, Review of the thermo-physical properties and performance characteristics of a refrigeration system using refrigerant-based nanofluids, Energies 9 (1) (2015) 22-39.[15] H. Peng, L.N. Lin, G.L. Ding, Influences of primary particle parameters and surfactant on aggregation behavior of nanoparticles in nanorefrigerant, Energy 89 (2015) 410-420.[16] Alawi, N.A.C. Sidik, Influence of particle concentration and temperature on the thermophysical properties of CuO/R134a nanorefrigerant, Int. Commun. Heat Mass Transfer 58 (2014) 79-84.[17] M.H.U. Bhuiyan, R. Saidur, M.A.Amalina, R.M. Mostafizur, A. Islam, Effect of nanoparticles concentration and their sizes on surface tension of nanofluids, Procedia Eng. 105 (2015) 431-437.[18] I.M. Mahbubul, S.A. Fadhilah, R. Saidur, K.Y. Leong, M.A. Amalina, Thermophysical properties and heat transfer performance of Al2O3/R134a nanorefrigerants, Int. J. Heat Mass Transf. 57 (1) (2013) 100-108.[19] I.M. Mahbubul, A. Saadah, R. Saidur, M.A. Khairul, A. Kamyar, Thermal performance analysis of Al2O3/R134a nanorefrigerant, Int. J. Heat Mass Transf. 85 (2015) 1034-1040.[20] I.M. Mahbubul, R. Saidur,M.A. Amalina, Influence of particle concentration and temperature on thermal conductivity and viscosity of Al2O3/R141b nanorefrigerant, Int. Commun. Heat Mass Transfer 43 (2013) 100-104.[21] K. Henderson, Y.G. Park, L.P. Liu, A.M. Jacobi, Flow-boiling heat transfer of R134a based nanofluids in a horizontal tube, Int. J. Heat Mass Transf. 53 (5-6) (2010) 944-951.[22] X.F. Yang, Z.H. Liu, Flow boiling heat transfer in the evaporator of a loop thermosyphon operating with CuO based aqueous nanofluid, Int. J. Heat Mass Transf. 55 (2012) 7375-7384.[23] L. Ventola, F. Robotti, M. Dialameh, F. Calignano, D. Manfredi, E. Chiavazzo, P. Asinari, Rough surfaces with enhanced heat transfer for electronics cooling by direct metal laser sintering, Int. J. Heat Mass Transf. 75 (2014) 58-74.[24] S. Kandlikar,W. Grande, Evolution of microchannel flow passages—thermohydraulic performance and fabrication technology, Heat Transfer Eng. 24 (2003) 3-17.[25] H. Peng, G.L. Ding, H.T. Hu, Effect of surfactant additives on nucleate pool boiling heat transfer of refrigerant-based nanofluid, Exp. Thermal Fluid Sci. 35 (2011) 960-970.[26] R. Kamatchi, S. Venkatachalapathy, B. Abhinaya Srinivas, Synthesis, stability, transport properties, and surfacewettability of reduced graphene oxide/water nanofluids, Int. J. Therm. Sci. 97 (2015) 17-25.[27] Y. Ding, D. Wen, Particle migration in a flow of nanoparticle suspensions, Powder Technol. 149 (2005) 84-92.[28] R.J. Phillips, R.C. Armstrong, R.A. Brown, A.L. Graham, J.R. Abbott, A constitutive equation for concentrated suspensions that accounts for shear-induced particle migration, Phys. Fluids A 4 (1992) 30-40.[29] J.A. Eastman, U.S. Choi, S.P. Li, L.J. Thompson, S. Lee, Enhanced thermal conductivity through the development of nanofluids, Department of Energy, Cambridge Univ Press, 1996 2-6.[30] Prajapati, N. Rohatgi, Flow boiling heat transfer enhancement by using ZnO-water nanofluids, Sci. Technol. Nucl. Installations (2014) 1-7.[31] O. Ahmed, M.S. Hamed, Experimental investigation of the effect of particle deposition on pool boiling of nanofluids, Int. J. Heat Mass Transf. 55 (2012) 3423-3436.[32] R.N. Wenzel, Resistance of solid surfaces to wetting by water, Ind. Eng. Chem. 28 (1936) 988-994.[33] X.P. Cao, Y.M. Jiang, Frictional property of wetting contact line andWenzel's behavior of solid surface tension, Acta Phys. Sin. 54 (05) (2005) 2202-2205.[34] S.J. Kim, I.C. Bang, J. Buongiorno, L.W. Hu, Effects of nanoparticle deposition on surface wettability influencing boiling heat transfer in nanofluids, Appl. Phys. Lett. 89 (15) (2006) 1531071-15310714.[35] H.T. Phan, N. Caney, Surface wettability control by nanocoating: The effects on pool boiling heat transfer and nucleation mechanism, Int. J. Heat Mass Transf. 52 (2009) 5459-5471.[36] D.X. Deng,W.Wan, H.R. Shao, Y. Tang, J.Y. Feng, J. Zeng, Effects of operation parameters on flow boiling characteristics of heat sink cooling systems with reentrant porous microchannels, Energy Convers. Manag. 96 (2015) 340-351.[37] R. Yun, J.H. Heo, Y.C. Kim, Evaporative heat transfer and pressure drop of R410A in microchannels, Int. J. Refrig. 29 (1) (2006) 92-100.[38] W. Li, Z. Wu, A general correlation for evaporative heat transfer in micro/minichannels, Int. J. Heat Mass Transf. 53 (9-10) (2010) 1778-1787.[39] G.M. Lazarek, S.H. Black, Evaporative heat transfer, pressure drop and critical heat flux in a small vertical tube with R-113, Int. J. Heat Mass Transf. 25 (1982) 945-960. |