[1] L. Zhong, M. Zhong, L. Dong, J. Zhang, F. Ma, G. Xu, Pneumatic classification of coal in bottom-fluidized transport column, CIESC J. 51(3) (2011) 150-153(in Chinese).[2] Q. Zhu, H. Li, Status quo and development prospect of magnetizing roasting via fluidized bed for low grade iron ore, CIESC J. 65(7) (2014) 2437-2442(in Chinese).[3] Q. Zhu, R. Wu, H. Li, Direct reduction of hematite powders in a fluidized bed reactor, Particuology 11(3) (2013) 294-300.[4] H.G. Kim, O. Lee, C. Chung, H. Kim, Fluidization characteristics of iron ore fines of wide size distribution in a cold tapered gas-solid fluidized bed, ISIJ Int. 40(1) (2000) 16-22.[5] T. Ariyama, S. Isozaki, S. Matsubara, H. Kawata, I. Kobayashi, Fluidization and degradation characteristics of iron ore fines in prereduction fluidized bed, ISIJ Int. 33(12) (1993) 1220-1227.[6] O. Levenspiel, Chemical Reaction Engineering, 3rd edition John Wiley & Sons, the United States of America, 1999.[7] D. Wolf, W. Resnick, Residence time distribution in real systems, Ind. Eng. Chem. Fundam. 2(4) (1963) 287-293.[8] J. Ragyraman, Y.B.G. Varma, A model for residence time distribution in multistage systems with cross-flow between active and dead regions, Chem. Eng. Sci. 28(2) (1973) 585-591.[9] K. Krisrnaiah, Y. Pydisetty, Y.B.G. Varna, Residence time distribution of solids in multistage fluidization, Chem. Eng. Sci. 37(9) (1982) 1371-1377.[10] P.A. Ambler, B.J. Milne, F. Berruti, D.S. Scott, Residence time distribution of solids in a circulating fluidized bed:experimental and modeling studies, Chem. Eng. Sci. 45(8) (1990) 2179-2186.[11] K. Kato, T. Takarda, N. Matsuo, T. Suto, N. Nakagawa, Residence-time distribution of fine particles in a powder-particle fluidized bed, Int. Chem. Eng. 17(4) (1994) 970-975.[12] H.S. Ranaswant, K.A. Abdelrahim, B.K. Simpson, J.P. Smith, Residence time distribution (RTD) in aseptic processing of particulate foods:a review, Food Res. Int. 28(3) (1995) 291-310.[13] S.S. Chapadgaokar, Y.P. Setty, Residence time distribution of solids in a fluidised bed, Indian J. Chem. Technol. 6(2) (1999) 100-106.[14] M.P. Babu, Y.P. Setty, Residence time distribution of solids in a fluidized bed, Can. J. Chem. Eng. 81(1) (2003) 118-123.[15] S. Rodr Guez-Rojo, N.L. Pez-Valdezate, M.J. Cocero, Residence time distribution studies of high pressure fluidized bed of microparticles, J. Supercrit. Fluids 44(3) (2008) 433-440.[16] W. Nie, Y. Wang, G. Sun, W. Ji, G. Xu, Particle residence time distribution in a continuous fluidized bed reactor, The 7th World Congress on Particle Technology. 7th Annual Conference of Chinese Society of Particuology cum Symposium on Particle Technology Across Taiwan Straits 2010, pp. 359-363.[17] S. Yagi, D. Kunii, Fluidized-solids reactors with continuous solids feed-I:residence time of particles in fluidized beds, Chem. Eng. Sci. 16(3-4) (1961) 364-371.[18] S. Heukelman, D. Groot, Fluidized bed roasting of micro-pelletized zinc concentrate:part Ⅱ-particle entrainment and residence time, J. South. Afr. Inst. Min. Metall. 111(11) (2011) 767-772.[19] I.C. Van Putten, M.V.S. Annaland, G. Weickert, Fluidization behavior in a circulating slugging fluidized bed reactor. Part I:residence time and residence time distribution of polyethylene solids, Chem. Eng. Sci. 62(9) (2007) 2522-2534.[20] Z. Hao, Q. Zhu, H. Li, Particle residence time and pressure drop in a fluidized bed with internals, Chin. J. Process. Eng. 6(S2) (2006) 359-363.[21] L. Zhang, J. Li, Q. Zhu, C. Hu, H. Li, Control of mean residence time difference for particles with wide size distribution in fluidized beds, Powder Technol. 312(2017) 270-276.[22] D. Kunii, O. Levenspiel, Fluidization Engineering, Butterworth-Heinemann, 1991354-356.[23] M. Kwauk, H. Li, Handbook of Fluidization, 243, Chemical Industry Press, Beijing, 2007.[24] K.G. Palappan, P.S.T. Sai, Studies on segregation of binary mixture of solids in continuous fast fluidized bed:Part Ⅱ. Effect of particle size, Chem. Eng. J. 139(2) (2008) 330-338.[25] H. Hatano, M. Ishida, Study on the entrainment of FCC particles from a fluidized bed, Powder Technol. 35(2) (1983) 201-209.[26] B. Hirschberg, J. Werther, Factors affecting solids segregation in circulating fluidizedbed riser, AIChE J. 44(1) (1998) 25-34.[27] A.T. Harris, J.F. Davidson, R.B. Thorpe, Particle residence time distributions in circulating fluidised beds, Chem. Eng. Sci. 58(11) (2003) 2181-2202.[28] C.W. Chan, J.P.K. Seville, D.J. Parker, J. Baeyens, Particle velocities and their residence time distribution in the riser of a CFB, Powder Technol. 203(2) (2010) 187-197.[29] G.L. Osberg, D.H. Charlesworth, Elutriation in a fluidized bed, Chem. Eng. Prog. 47(11) (1951) 566-570.[30] E. Kewes, F. Dahlem, S. Bec, N. Estime, E. Risse, The sequential elutriation behavior of wide particle size distributions, Powder Technol. 286(2015) 230-239.[31] J.-H. Choi, J.-M. Suh, I.-Y. Chang, D.-W. Shun, C.-K. Yi, The effect of fine particles on elutriation of coarse particles in a gas fluidized bed, Powder Technol. 121(2-3) (2001) 190-194.[32] E.R. Monazam, R.W. Breault, J. Weber, K. Layfield, Elutriation of fines from binary particle mixtures in bubbling fluidized bed cold model, Powder Technol. 305(2017) 340-346.[33] D. Geldart, D.J. Pope, Interaction of fine and coarse particles in the freeboard of a fluidized bed, Powder Technol. 34(1) (1983) 95-97.[34] Wouter De Vos, W. Nicol, E.D. Toit, Entrainment behaviour of high-density Geldart A powders with different shapes, Powder Technol. 190(3) (2009) 297-303.[35] A. Haider, O. Levenspiel, Drag coefficient and terminal velocity of spherical and nonspherical particles, Powder Technol. 58(1) (1989) 63-70. |