[1] M. Cardone, S. Strano, M. Terzo, Optimal power-assistance system for a new pedelec model, Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 230(2016) 3012-3025. [2] G. Squadrito, P. Cristiani, Microbial and enzymatic fuel cells, Compendium of Hydrogen Energy, Elsevier 2016, pp. 147-173. [3] M. Mostafaei, H. Javadikia, L. Naderloo, Modeling the effects of ultrasound power and reactor dimension on the biodiesel production yield:Comparison of prediction abilities between response surface methodology (RSM) and adaptive neuro-fuzzy inference system (ANFIS), Energy 115(2016) 626-636. [4] S. Hama, A. Kondo, Enzymatic biodiesel production:An overview of potential feedstocks and process development, Bioresour. Technol. 135(2013) 386-395. [5] M. Wang, K. Nie, F. Yun, H. Cao, L. Deng, F. Wang, T.W. Tan, Biodiesel with low temperature properties:Enzymatic synthesis of fusel alcohol fatty acid ester in a solvent free system, Renew. Energy 83(2015) 1020-1025. [6] Z. Helwani, M. Othman, N. Aziz, W. Fernando, J. Kim, Technologies for production of biodiesel focusing on green catalytic techniques:A review, Fuel Process. Technol. 90(2009) 1502-1514. [7] S. Jain, M. Sharma, Prospects of biodiesel from Jatropha in India:A review, Renew. Sust. Energ. Rev. 14(2010) 763-771. [8] M. Tabatabaei, K. Karimi, I. Sárvári Horváth, R. Kumar, Recent trends in biodiesel production, Biofuel Res. J. 2(2015) 258-267. [9] M. Mostafaei, B. Ghobadian, M. Barzegar, A. Banakar, Optimization of ultrasonic assisted continuous production of biodiesel using response surface methodology, Ultrason. Sonochem. 27(2015) 54-61. [10] G. Kumar, Ultrasonic-assisted reactive-extraction is a fast and easy method for biodiesel production from Jatropha curcas oilseeds, Ultrason. Sonochem. 37(2017) 634-639. [11] M. Aghbashlo, S. Hosseinpour, M. Tabatabaei, A. Dadak, Fuzzy modeling and optimization of the synthesis of biodiesel from waste cooking oil (WCO) by a low power, high frequency piezo-ultrasonic reactor, Energy 132(2017) 65-78. [12] M. Sabzimaleki, B. Ghobadian, M. Mazloom Farsibaf, G. Najafi, M. Dehghani Soufi, S. Mohammad Safieddin Ardebili, Optimization of biodiesel ultrasound-assisted synthesis from castor oil using response surface methodology (RSM), Chem. Prod. Process. Model. 10(2015) 123-133. [13] S. Babel, S. Arayawate, E. Faedsura, H. Sudrajat, Microwave-Assisted Transesterification of Waste Cooking Oil for Biodiesel Production, Utilization and Management of Bioresources, Springer, 2018165-174. [14] M. Barekati-Goudarzi, P.D. Muley, A. Clarens, D.B. Nde, D. Boldor, Continuous microwave-assisted in-situ transesterification of lipids in seeds of invasive Chinese tallow trees (Triadica sebifera L.):Kinetic and thermodynamic studies, Biomass Bioenergy 107(2017) 353-360. [15] A. Tangy, I.N. Pulidindi, N. Perkas, A. Gedanken, Continuous flow through a microwave oven for the large-scale production of biodiesel from waste cooking oil, Bioresour. Technol. 224(2017) 333-341. [16] E. Martinez-Guerra, V.G. Gude, Synergistic effect of simultaneous microwave and ultrasound irradiations on transesterification of waste vegetable oil, Fuel 137(2014) 100-108. [17] I. Choedkiatsakul, K. Ngaosuwan, S. Assabumrungrat, S. Tabasso, G. Cravotto, Integrated flow reactor that combines high-shear mixing and microwave irradiation for biodiesel production, Biomass Bioenergy 77(2015) 186-191. [18] S. Ardebili, S. Mohammad, T.T. Hashjin, B. Ghobadian, G. Najafi, S. Mantegna, et al., Optimization of biodiesel synthesis under simultaneous ultrasound-microwave irradiation using response surface methodology (RSM), Green Processes Synth. 4(2015) 259-267. [19] V.G. Gude, P. Patil, E. Martinez-Guerra, S. Deng, N. Nirmalakhandan, Microwave energy potential for biodiesel production, Sustainable Chem. Processes 1(2013) 5. [20] S. Soltani, U. Rashid, R. Yunus, Y.H. Taufiq-Yap, Synthesis of biodiesel through catalytic transesterification of various feedstocks using fast solvothermal technology:A critical review, CarRv 57(2015) 407-435. [21] I.K. Hong, H. Jeon, H. Kim, S.B. Lee, Preparation of waste cooking oil based biodiesel using microwave irradiation energy, J. Ind. Eng. Chem. 42(2016) 107-112. [22] I. Choedkiatsakul, K. Ngaosuwan, S. Assabumrungrat, S. Mantegna, G. Cravotto, Biodiesel production in a novel continuous flow microwave reactor, Renew. Energy 83(2015) 25-29. [23] Y. Groisman, A. Gedanken, Continuous flow, circulating microwave system and its application in nanoparticle fabrication and biodiesel synthesis, J. Phys. Chem. C 112(2008) 8802-8808. [24] R. Priambodo, T.-C. Chen, M.-C. Lu, A. Gedanken, J.-D. Liao, Y.-H. Huang, Novel technology for bio-diesel production from cooking and waste cooking oil by microwave irradiation, Energy Procedia 75(2015) 84-91. [25] D. Leung, Y. Guo, Transesterification of neat and used frying oil:Optimization for biodiesel production, Fuel Process. Technol. 87(2006) 883-890. [26] K. Thirugnanasambandham, V. Sivakumar, Investigation on biodiesel production from cotton seed oil using microwave irradiated transesterfication process, Environ. Prog. Sustain. Energy 34(2015) 1229-1235. [27] V.L. Gole, P.R. Gogate, Intensification of synthesis of biodiesel from non-edible oil using sequential combination of microwave and ultrasound, Fuel Process. Technol. 106(2013) 62-69. [28] M.G. Nayak, A.P. Vyas, Optimization of microwave-assisted biodiesel production from Papaya oil using response surface methodology, Renew. Energy 138(2019) 18-28. [29] G. Cravotto, P. Cintas, The combined use of microwaves and ultrasound:Methods and practice, Microwaves in Organic Synthesis, Third edition, Volume 1, 2012, pp. 541-562. [30] K. Thakkar, K. Shah, P. Kodgire, S.S. Kachhwaha, In-situ reactive extraction of castor seeds for biodiesel production using the coordinated ultrasound-microwave irradiation:Process optimization and kinetic modeling, Ultrason. Sonochem. 50(2019) 6-14. [31] G. Krishnaiah, S. Pasnoori, P. Santhoshi, K. Rajanna, Y.R. Rao, K.R. Patnaik, Ultrasonic and microwave effects on crystalline Mn (II) carbonate catalyzed biodiesel production using watermelon (Citrullus vulgaris) seed oil and alcohol (fibrous flesh) as exclusive green feedstock, Biofuels 7(2016) 735-741. [32] A. Kalva, T. Sivasankar, V.S. Moholkar, Physical mechanism of ultrasound-assisted synthesis of biodiesel, Ind. Eng. Chem. Res. 48(2009) 534-544. [33] A.S. Faris, S.K. Al-Naseri, N. Jamal, R. Isse, M. Abed, Z. Fouad, et al., Effects of magnetic field on fuel consumption and exhaust emissions in two-stroke engine, Energy Procedia 18(2012) 327-338. [34] A.A. Kipriyanov, P.A. Purtov, Magnetic field effects on chemical reactions near the disturbance of stationary states conditions, Chaotic Model. Simul. 1(2012) 53-65. [35] T.M. Barnard, N.E. Leadbeater, M.B. Boucher, L.M. Stencel, B.A. Wilhite, Continuousflow preparation of biodiesel using microwave heating, Energy Fuel 21(2007) 1777-1781. [36] İ. Rahmanlar, S. Yücel, D. Özçimen, The production of methyl esters from waste frying oil by microwave method, Asia Pac. J. Chem. Eng. 7(2012) 698-704. [37] N. Azcan, O. Yilmaz, Microwave assisted transesterification of waste frying oil and concentrate methyl ester content of biodiesel by molecular distillation, Fuel 104(2013) 614-619. [38] S. Dhingra, G. Bhushan, K. Dubey, Validation and enhancement of waste cooking sunflower oil based biodiesel production by the trans-esterification process, Energy Sources Part A 38(2016) 1448-1454. [39] A.K. Sharma, P.K. Sahoo, S. Singhal, G. Joshi, Exploration of upstream and downstream process for microwave assisted sustainable biodiesel production from microalgae Chlorella vulgaris, Bioresour. Technol. 216(2016) 793-800. [40] N.E. Leadbeater, T.M. Barnard, L.M. Stencel, Batch and continuous-flow preparation of biodiesel derived from butanol and facilitated by microwave heating, Energy Fuel 22(2008) 2005-2008. [41] A. Kumar, A. Chirchir, S. Namango, H. Kiriamiti, Microwave irradiated transesterification of Croton megalocarpus oil-Process optimization using response surface methodology, Proceedings of Sustainable Research and Innovation Conference 2016, pp. 132-137. [42] P. Patil, H. Reddy, T. Muppaneni, S. Ponnusamy, Y. Sun, P. Dailey, et al., Optimization of microwave-enhanced methanolysis of algal biomass to biodiesel under temperature controlled conditions, Bioresour. Technol. 137(2013) 278-285. [43] Y.C. Lin, K.H. Hsu, J.F. Lin, Rapid palm-biodiesel production assisted by a microwave system and sodium methoxide catalyst, Fuel 115(2014) 306-311. [44] B. Mostafaei, B. Ghobadian, M. Barzegar, A. Banakar, Optimization of ultrasonic reactor geometry for biodiesel production using response surface methodology, J. Agric. Sci. Technol. 15(2013) 697-708. [45] M.M.A. Shirazi, A. Kargari, M. Tabatabaei, B. Mostafaeid, M. Akia, M. Barkhi, et al., Acceleration of biodiesel-glycerol decantation through NaCl-assisted gravitational settling:A strategy to economize biodiesel production, Bioresour. Technol. 134(2013) 401-406. [46] X. Yin, H. Ma, Q. You, Z. Wang, J. Chang, Comparison of four different enhancing methods for preparing biodiesel through transesterification of sunflower oil, ApEn 91(2012) 320-325. [47] J.P. Maran, B. Priya, Comparison of response surface methodology and artificial neural network approach towards efficient ultrasound-assisted biodiesel production from muskmelon oil, Ultrason. Sonochem. 23(2015) 192-200. [48] J.P. Maran, B. Priya, S. Manikandan, Modeling and optimization of supercritical fluid extraction of anthocyanin and phenolic compounds from Syzygium cumini fruit pulp, J. Food Sci. Technol. 51(2014) 1938-1946. [49] L. Perreux, A. Loupy, A. Petit, Nonthermal effects of microwaves in organic synthesis, Microwaves in Organic Synthesis, Third edition, vol. 1, 2013, pp. 127-207. [50] M. Kaupp, Chemical bonding of main-group elements, The Chemical Bond:Chemical Bonding Across the Periodic Table 2014, pp. 1-24. [51] A. Demirbas, The importance of bioethanol and biodiesel from biomass, Energy Sources Part B 3(2008) 177-185. [52] H. Guo, Z. Liu, Y. Chen, R.A. Yao, A study of magnetic effects on the physicochemical properties of individual hydrocarbons, Logistical Engineering College, Chongqing, 2011, 216-220. [53] A.R. Aktar, P. Tipole, V. Bhojwani, S. Deshmukh, Effect of magnetic field strength on hydrocarbon fuel viscosity and engine performance, IJMCA 1(2013) 094-098. [54] P.M. Patel, G.P. Rathod, T.M. Patel, Effect of magnetic field on performance and emission of single cylinder four stroke diesel engine, IOSR J. Eng. 4(2014) 28-34. [55] H. Zhang, J. Ding, Z. Zhao, Microwave assisted esterification of acidified oil from waste cooking oil by CERP/PES catalytic membrane for biodiesel production, Bioresour. Technol. 123(2012) 72-77. [56] S. Zhang, Y.G. Zu, Y.J. Fu, M. Luo, D.Y. Zhang, T. Efferth, Rapid microwave-assisted transesterification of yellow horn oil to biodiesel using a heteropolyacid solid catalyst, Bioresour. Technol. 101(2010) 931-936. [57] H. Yuan, B. Yang, G. Zhu, Synthesis of biodiesel using microwave absorption catalysts, Energy Fuel 23(2008) 548-552. [58] B. Khedri, M. Mostafaei, S.M. Safieddin Ardebili, A review on microwave-assisted biodiesel production, Energy Sources Part A (2018) 1-19. [59] R. Huang, J. Cheng, Y. Qiu, T. Li, J. Zhou, K. Cen, Using renewable ethanol and isopropanol for lipid transesterification in wet microalgae cells to produce biodiesel with low crystallization temperature, Energy Convers. Manag. 105(2015) 791-797. [60] J.M. Encinar, J.F. Gonzalez, A. Rodríguez-Reinares, Biodiesel from used frying oil. Variables affecting the yields and characteristics of the biodiesel, Ind. Eng. Chem. Res. 44(2005) 5491-5499. [61] N. Azcan, A. Danisman, Microwave assisted transesterification of rapeseed oil, Fuel 87(2008) 1781-1788. [62] M.F. Demirbas, Pyrolysis of vegetable oils and animal fats for the production of renewable fuels, Energy Educ. Sci. Technol. 22(2008) 59-67. [63] C. Koopmans, M. Iannelli, P. Kerep, M. Klink, S. Schmitz, S. Sinnwell, et al., Microwave-assisted polymer chemistry:Heck-reaction, transesterification, Baeyer-Villiger oxidation, oxazoline polymerization, acrylamides, and porous materials, Tetrahedron 62(2006) 4709-4714. [64] F. Motasemi, F.N. Ani, A review on microwave-assisted production of biodiesel, Renew. Sust. Energ. Rev. 16(2012) 4719-4733. [65] T. Issariyakul, M.G. Kulkarni, A.K. Dalai, N.N. Bakhshi, Production of biodiesel from waste fryer grease using mixed methanol/ethanol system, Fuel Process. Technol. 88(2007) 429-436. [66] P. Verma, M. Sharma, Comparative analysis of effect of methanol and ethanol on Karanja biodiesel production and its optimisation, Fuel 180(2016) 164-174. [67] M.G. Kulkarni, A. Dalai, N. Bakhshi, Transesterification of canola oil in mixed methanol/ethanol system and use of esters as lubricity additive, Bioresour. Technol. 98(2007) 2027-2033. [68] Y. Zu, S. Zhang, Y. Fu, W. Liu, Z. Liu, M. Luo, et al., Rapid microwave-assisted transesterification for the preparation of fatty acid methyl esters from the oil of yellow horn (Xanthoceras sorbifolia Bunge.), Eur. Food Res. Technol. 229(2009) 43-49. [69] G. Vicente, M. Martınez, J. Aracil, Integrated biodiesel production:A comparison of different homogeneous catalysts systems, Bioresour. Technol. 92(2004) 297-305. [70] A. Silitonga, H. Masjuki, T. Mahlia, H.C. Ong, F. Kusumo, H. Aditiya, et al., Schleichera oleosa L oil as feedstock for biodiesel production, Fuel 156(2015) 63-70. [71] J. Pullen, K. Saeed, Investigation of the factors affecting the progress of basecatalyzed transesterification of rapeseed oil to biodiesel FAME, Fuel Process. Technol. 130(2015) 127-135. |