中国化学工程学报 ›› 2019, Vol. 27 ›› Issue (7): 1543-1553.DOI: 10.1016/j.cjche.2018.08.017
• Selected Papers on Sustainable Chemical Process Systems • 上一篇 下一篇
Yi Man1,2, Yulin Han1, Jigeng Li1, Mengna Hong1
收稿日期:
2018-06-21
出版日期:
2019-07-28
发布日期:
2019-10-14
通讯作者:
Yi Man
Yi Man1,2, Yulin Han1, Jigeng Li1, Mengna Hong1
Received:
2018-06-21
Online:
2019-07-28
Published:
2019-10-14
Contact:
Yi Man
摘要: Papermaking industry is a high-energy-consuming industry with long supply chain. The growth of paper product demand further intensifies the need of energy consumption. Energy saving through the full supply chain has become a focal point for long-term sustainable development of the papermaking industry. This paper reviews the advances in life cycle analysis for the papermaking industry in recent years. All the stages from the full supply chain are involved to give a panoramic overview of the papermaking industry. The object of this paper is to provide scientific basis to industry and decision-makers with profound understanding of the energy consumption and energy saving potential in a life cycle perspective.
Yi Man, Yulin Han, Jigeng Li, Mengna Hong. Review of energy consumption research for papermaking industry based on life cycle analysis[J]. 中国化学工程学报, 2019, 27(7): 1543-1553.
Yi Man, Yulin Han, Jigeng Li, Mengna Hong. Review of energy consumption research for papermaking industry based on life cycle analysis[J]. Chinese Journal of Chemical Engineering, 2019, 27(7): 1543-1553.
[1] N. Rahmat, A.Z. Abdullah, A.R. Mohamed, Recent progress on innovative and potential technologies for glycerol transformation into fuel additives:A critical review, Renew. Sust. Energ. Rev. 14(3) (2010) 987-1000. [2] H. Tan, A.A. Aziz, M. Aroua, Glycerol production and its applications as a raw material:A review, Renew. Sust. Energ. Rev. 27(2013) 118-127. [3] Y. Xiao, G. Xiao, A. Varma, A universal procedure for crude glycerol purification from different feedstocks in biodiesel production experimental and simulation study, Ind. Eng. Chem. Res. 52(39) (2013) 14291-14296. [4] M. Ardi, M. Aroua, N.A. Hashim, Progress, prospect and challenges in glycerol purification process:A review, Renew. Sust. Energ. Rev. 42(2015) 1164-1173. [5] B. Liu, F. Gao, Navigating glycerol conversion roadmap and heterogeneous catalyst selection aided by density functional theory:A review, Catalysts 8(2018) 44. [6] S. Veluturla, N. Archna, D.S. Rao, N. Hezil, I. Indraja, S. Spoorthi, Catalytic valorization of raw glycerol derived from biodiesel:A review, Biofuels 9(3) (2018) 305-314. [7] N. Razali, A.Z. Abdullah, Production of lactic acid from glycerol via chemical conversion using solid catalyst:A review, Appl. Catal. A Gen. 543(2017) 234-246. [8] A. Galadima, O. Muraza, A review on glycerol valorization to acrolein over solid acid catalysts, J. Taiwan Inst. Chem. Eng. 67(2016) 29-44. [9] Y. Wang, J. Zhou, X. Guo, Catalytic hydrogenolysis of glycerol to propanediols:A review, RSC Adv. 5(2015) 74611-74628. [10] A. Patel, S. Singh, A green and sustainable approach for esterification of glycerol using 12-tungstophosphoric acid anchored to different supports:kinetics and effect of support, Fuel 118(2014) 358-364. [11] W.K. Teng, G.C. Ngoh, R. Yusoff, M.K. Aroua, A review on the performance of glycerol carbonate production via catalytic transesterification:effects of influencing parameters, Energy Convers. Manag. 88(2014) 484-497. [12] F. Wang, X. Chu, F. Zhu, Q. Li, F. Wu, B. Liu, Study on catalytic performance and deactivation behavior of HZSM-5 in aromatization of glycerol, Energ. Technol. 6(11) (2018) 2238-2246. [13] A. Martin, M. Richter, Oligomerization of glycerol-A critical review, Eur. J. Lipid Sci. Technol. 113(1) (2011) 100-117. [14] Y.C. Lin, Catalytic valorization of glycerol to hydrogen and syngas, Int. J. Hydrog. Energy 38(6) (2013) 2678-2700. [15] M. Velasquez, A. Santamaria, C. Batiot-Dupeyrat, Selective conversion of glycerol to hydroxyacetone in gas phase over La2CuO4 catalyst, Appl. Catal. B Environ. 160-161(2014) 606-613. [16] L. Huang, F. Qin, Z. Huang, Y. Zhuang, J. Ma, H. Xu, W. Shen, Hierarchical ZSM-5 zeolite synthesized by an ultrasound-assisted method as a long-life catalyst for dehydration of glycerol to acrolein, Ind. Eng. Chem. Res. 55(27) (2016) 7318-7327. [17] S. Sato, D. Sakai, F. Sato, Y. Yamada, Vapor-phase dehydration of glycerol into hydroxyacetone over silver catalyst, Chem. Lett. 41(9) (2012) 965-966. [18] A. Fernandes, M.F. Ribeiro, J.P. Lourenco, Gas-phase dehydration of glycerol over hierarchical silicoaluminophosphate SAPO-40, Catal. Commun. 95(2017) 16-20. [19] S. Celerier, S. Morisset, I. Batonneau-Gener, T. Belin, K. Younes, C. BatiotDupeyrat, Glycerol dehydration to hydroxyacetone in gas phase over copper supported on magnesium oxide (hydroxide) fluoride catalysts, Appl. Catal. A Gen. 557(2018) 135-144. [20] D. Yun, Y.S. Yun, T.Y. Kim, H. Park, J.M. Lee, J.W. Han, J. Yi, Mechanistic study of glycerol dehydration on Brønsted acidic amorphous aluminosilicate, J. Catal. 341(2016) 33-43. [21] T. Ma, J. Ding, R. Shao, W. Xu, Z. Yun, Dehydration of glycerol to acrolein over Wells-Dawson and Keggin type phosphotungstic acids supported on MCM-41 catalysts, Chem. Eng. J. 316(2017) 797-806. [22] M. Dalil, D. Carnevali, J.L. Dubois, G.S. Patience, Transient acrolein selectivity and carbon deposition study of glycerol dehydration over WO3/TiO2 catalyst, Chem. Eng. J. 270(2015) 557-563. [23] L.G. Possato, T.F. Chaves, W.H. Cassinelli, S.H. Pulcinelli, C.V. Santilli, L. Martins, The multiple benefits of glycerol conversion to acrolein and acrylic acid catalyzed by vanadium oxides supported on micro-mesoporous MFI zeolites, Catal. Today 289(2017) 20-28. [24] T. Ma, Z. Yun, W. Xu, L. Chen, L. Li, J. Ding, R. Shao, Pd-H3PW12O40/Zr-MCM-41:An efficient catalyst for the sustainable dehydration of glycerol to acrolein, Chem. Eng. J. 294(2016) 343-352. [25] M. Dalil, D. Carnevali, M. Edake, A. Auroux, J.-L. Dubois, G.S. Patience, Gas phase dehydration of glycerol to acrolein:Coke on WO>3/TiO2 reduces byproducts, J. Mol. Catal. A Chem. 421(2016) 146-155. [26] M.H. Haider, N.F. Dummer, D. Zhang, P. Miedziak, T.E. Davies, S.H. Taylor, D.J. Willock, D.W. Knight, D. Chadwick, G.J. Hutchings, Rubidium-and caesiumdoped silicotungstic acid catalysts supported on alumina for the catalytic dehydration of glycerol to acrolein, J. Catal. 286(2012) 206-213. [27] A. Galadima, O. Muraza, From synthesis gas production to methanol synthesis and potential upgrade to gasoline range hydrocarbons:A review, J. Nat. Gas Sci. Eng. 25(2015) 303-316. [28] G.S. Foo, D. Wei, D.S. Sholl, C. Sievers, Role of Lewis and Bronsted acid sites in the dehydration of glycerol over niobia, ACS Catal. 4(9) (2014) 3180-3192. [29] T.Q. Silva, M.B. dos Santos, A.A. Santiago, D.O. Santana, F.T. Cruz, H.M. Andrade, A.J. Mascarenhas, Gas phase glycerol oxidative dehydration over bifunctional V/H-zeolite catalysts with different zeolite topologies, Catal. Today 289(2017) 38-46. [30] D. Hernandez, M. Velasquez, P. Ayrault, D. Lopez, J.J. Fernandez, A. Santamaria, C. Batiot-Dupeyrat, Gas phase glycerol conversion over lanthanum based catalysts:LaNiO3 and La2O3, Appl. Catal. A Gen. 467(2013) 315-324. [31] B.D. Costa, M. Legnoverde, C. Lago, H. Decolatti, C. Querini, Sulfonic functionalized SBA-15 catalysts in the gas phase glycerol dehydration. Thermal stability and catalyst deactivation, Microporous Mesoporous Mater. 230(2016) 66-75. [32] M.V. Rodrigues, C. Vignatti, T. Garetto, S.H. Pulcinelli, C.V. Santilli, L. Martins, Glycerol dehydration catalyzed by MWW zeolites and the changes in the catalyst deactivation caused by porosity modification, Appl. Catal. A Gen. 495(2015) 84-91. [33] L.S. Ribeiro, E.G. Rodrigues, J.J. Delgado, X. Chen, M.F.R. Pereira, J.J.M. Orfao, Pd, Pt, and Pt-Cu catalysts supported on carbon nanotube (CNT) for the selective oxidation of glycerol in alkaline and base-free conditions, Ind. Eng. Chem. Res. 55(31) (2016) 8548-8556. [34] J. Lei, X. Duan, G. Qian, X. Zhou, D. Chen, Size effects of Pt nanoparticles supported on carbon nanotubes for selective oxidation of glycerol in a basefree condition, Ind. Eng. Chem. Res. 53(42) (2014) 16309-16315. [35] M.L. Faroppa, J.J. Musci, M.E. Chiosso, C.G. Caggiano, H.P. Bideberripe, J.L.G. Fierro, G.J. Siri, M.L. Casella, Oxidation of glycerol with H2O2 on Pb-promoted Pd/c-Al2O3 catalysts, Chin. J. Catal. 37(11) (2016) 1982-1990. [36] N. Dimitratos, A. Villa, L. Prati, C. Hammond, C.E. Chan-Thaw, J. Cookson, P.T. Bishop, Effect of the preparation method of supported Au nanoparticles in the liquid phase oxidation of glycerol, Appl. Catal. A Gen. 514(2016) 267-275. [37] M. Zhang, J. Shi, W. Ning, Z. Hou, Reduced graphene oxide decorated with PtCo bimetallic nanoparticles:Facile fabrication and application for base-free oxidation of glycerol, Catal. Today 298(2017) 234-240. [38] S.S. Liu, K.Q. Sun, B.Q. Xu, Specific selectivity of Au-catalyzed oxidation of glycerol and other C3-polyols in water without the presence of a base, ACS Catal. 4(7) (2014) 2226-2230. [39] Y. Xiao, J. Greeley, A. Varma, Z.J. Zhao, G. Xiao, An experimental and theoretical study of glycerol oxidation to 1,3-dihydroxyacetone over bimetallic Pt-Bi catalysts, AIChE J. 63(2) (2017) 705-715. [40] A. Villa, S. Campisi, C.E. Chan-Thaw, D. Motta, D. Wang, L. Prati, Bismuth modified Au-Pt bimetallic catalysts for dihydroxyacetone production, Catal. Today 249(2015) 103-108. [41] G.M. Lari, C. Mondelli, S. Papadokonstantakis, M. Morales, K. Hungerbuhler, J. Perez-Ramirez, Environmental and economic assessment of glycerol oxidation to dihydroxyacetone over technical iron zeolite catalysts, React. Chem. Eng. 1(2016) 106-118. [42] X. Ning, Y. Li, H. Yu, F. Peng, H. Wang, Y. Yang, Promoting role of bismuth and antimony on Pt catalysts for the selective oxidation of glycerol to dihydroxyacetone, J. Catal. 335(2016) 95-104. [43] P.-G. Choi, N. Nunotani, N. Imanaka, Efficient production of dihydroxyacetone from glycerol over a Pt/CeO2-ZrO2-Bi2O3/SBA-16 catalyst, J. Asian Ceramic Soc. 6(4) (2018) 368-373. [44] D. Georgios, T. Harun, Effect of post-treatment on structure and catalytic activity of CuCo-based materials for glycerol oxidation, ChemCatChem 9(4) (2017) 610-619. [45] J. Dou, B. Zhang, H. Liu, J. Hong, S. Yin, Y. Huang, R. Xu, Carbon supported Pt9Sn1 nanoparticles as an efficient nanocatalyst for glycerol oxidation, Appl. Catal. B Environ. 180(2016) 78-85. [46] J. Cai, H. Ma, J. Zhang, Z. Du, Y. Huang, J. Gao, J. Xu, Catalytic oxidation of glycerol to tartronic acid over Au/HY catalyst under mild conditions, Chin. J. Catal. 35(10) (2014) 1653-1660. [47] L. Abis, S.J. Freakley, G. Dodekatos, D.J. Morgan, M. Sankar, N. Dimitratos, Q. He, C.J. Kiely, G.J. Hutchings, Highly active gold and gold-palladium catalysts prepared by colloidal methods in the absence of polymer stabilizers, ChemCatChem 9(15) (2017) 2914-2918. [48] Y. Shen, S. Zhang, H. Li, Y. Ren, H. Liu, Efficient synthesis of lactic acid by aerobic oxidation of glycerol on Au-Pt/TiO2 catalysts, Chem. Eur. J. 16(25) (2010) 7368-7371. [49] H.J. Cho, C.C. Chang, W. Fan, Base free, one-pot synthesis of lactic acid from glycerol using a bifunctional Pt/Sn-MFI catalyst, Green Chem. 16(2014) 3428-3433. [50] G.M. Lari, R. Garcia-Muelas, C. Mondelli, N. Lopez, J. Perez-Ramirez, Glycerol oxidehydration to pyruvaldehyde over silver-based catalysts for improved lactic acid production, Green Chem. 18(2016) 4682-4692. [51] R.K.P. Purushothaman, J. van Haveren, D. van Es, I. Melian-Cabrera, J. Meeldijk, H. Heeres, An efficient one pot conversion of glycerol to lactic acid using bimetallic gold-platinum catalysts on a nanocrystalline CeO2 support, Appl. Catal. B Environ. 147(2014) 92-100. [52] S. Thanasilp, J.W. Schwank, V. Meeyoo, S. Pengpanich, M. Hunsom, One-pot oxydehydration of glycerol to value-added compounds over metal-doped SiW/HZSM-5 catalysts:Effect of metal type and loading, Chem. Eng. J. 275(2015) 113-124. [53] B. Sarkar, C. Pendem, L.N. Sivakumar Konathala, R. Tiwari, T. Sasaki, R. Bal, Cu nanoclusters supported on nanocrystalline SiO2-MnO2:a bifunctional catalyst for the one-step conversion of glycerol to acrylic acid, Chem. Commun. 50(2014) 9707-9710. [54] K. Omata, K. Matsumoto, T. Murayama, W. Ueda, Direct oxidative transformation of glycerol to acrylic acid over Nb-based complex metal oxide catalysts, Catal. Today 259(2016) 205-212. [55] D. Tongsakul, S. Nishimura, K. Ebitani, Platinum/gold alloy nanoparticlessupported hydrotalcite catalyst for selective aerobic oxidation of polyols in base-free aqueous solution at room temperature, ACS Catal. 3(10) (2013) 2199-2207. [56] S. Gil, P.J. Lucas, A. Nieto-Marquez, L. Sanchez-Silva, A. Giroir-Fendler, A. Romero, J.L. Valverde, Synthesis and characterization of nitrogen-doped carbon nanospheres decorated with Au nanoparticles for the liquid-phase oxidation of glycerol, Ind. Eng. Chem. Res. 53(43) (2014) 16696-16706. [57] J. Su, L. Yang, X. Yang, M. Lu, B. Luo, H. Lin, Simultaneously converting carbonate/bicarbonate and biomass to value-added carboxylic acid salts by aqueous-phase hydrogen transfer, ACS Sustain. Chem. Eng. 3(1) (2015) 195-203. [58] M.M. Diallo, J. Mijoin, S. Laforge, Y. Pouilloux, Preparation of Fe-BEA zeolites by isomorphous substitution for oxidehydration of glycerol to acrylic acid, Catal. Commun. 79(2016) 58-62. [59] G.M. Lari, C. Mondelli, J. Perez-Ramirez, Gas-phase oxidation of glycerol to dihydroxyacetone over tailored iron zeolites, ACS Catal. 5(3) (2015) 1453-1461. [60] M. Tao, D. Zhang, X. Deng, X. Li, J. Shi, X. Wang, Lewis-acid-promoted catalytic cascade conversion of glycerol to lactic acid by polyoxometalates, Chem. Commun. 52(2016) 3332-3335. [61] R. Palacio, S. Torres, S. Royer, A.S. Mamede, D. Lopez, D. Hernandez, CuO/CeO2 catalysts for glycerol selective conversion to lactic acid, Dalton Trans. 47(2018) 4572-4582. [62] R. Palacio, S. Torres, S. Royer, A.S. Mamede, D. Lopez, D. Hernandez, Selective glycerol conversion to lactic acid on Co3O4/CeO2 catalyst, Dalton Trans. 302(2018) 196-202. [63] G.-Y. Yang, Y.H. Ke, H.F. Ren, C.L. Liu, R.Z. Yang, W.S. Dong, The conversion of glycerol to lactic acid catalyzed by ZrO2-supported CuO catalysts, Chem. Eng. J. 283(2016) 759-767. [64] M.R.A. Arcanjo, I.J. Silva, E. Rodriguez-Castellon, A. Infantes-Molina, R.S. Vieira, Conversion of glycerol into lactic acid using Pd or Pt supported on carbon as catalyst, Catal. Today 279(2017) 317-326. [65] X. Deng, G. Dodekatos, K. Pupovac, C. Weidenthaler, W.N. Schmidt, F. Schuth, H. Tuysuz, Pseudomorphic generation of supported catalysts for glycerol oxidation, ChemCatChem 7(23) (2018) 3832-3837. [66] R. Ciriminna, M. Pagliaro, One-pot homogeneous and heterogeneous oxidation of glycerol to ketomalonic acid mediated by TEMPO, Adv. Synth. Catal. 345(3) (2003) 383-388. [67] Y. Li, H. Liu, L. Ma, D. He, Influence of Pd precursors and Cl addition on performance of Pd-Re catalysts in glycerol hydrogenolysis to propanediols, Appl. Catal. A Gen. 522(2016) 13-20. [68] D. Yang, T. Jiang, T. Wu, P. Zhang, H. Han, B. Han, Highly selective oxidation of cyclohexene to 2-cyclohexene-1-one in water using molecular oxygen over Fe-Co-g-C3N4, Cat. Sci. Technol. 6(2016) 193-200. [69] T. Mallat, A. Baiker, Oxidation of alcohols with molecular oxygen on solid catalysts, Chem. Rev. 104(6) (2004) 3037-3058. [70] R. Liu, T. Wang, D. Cai, Y. Jin, Highly efficient production of acrylic acid by sequential dehydration and oxidation of glycerol, Ind. Eng. Chem. Res. 53(21) (2014) 8667-8674. [71] X. Jin, M. Zhao, W. Yan, C. Zeng, P. Bobba, P.S. Thapa, B. Subramaniam, R.V. Chaudhari, Anisotropic growth of PtFe nanoclusters induced by latticemismatch:Efficient catalysts for oxidation of biopolyols to carboxylic acid derivatives, J. Catal. 337(2016) 272-283. [72] N. Gupta, O. Khavryuchenko, A. Villa, D. Su, Metal-free oxidation of glycerol over nitrogen-containing carbon nanotubes, ChemSusChem 10(15) (2017) 3030-3034. [73] J. Zhang, L. Wang, Y. Ji, F. Chen, F.S. Xiao, Mesoporous zeolites for biofuel upgradingandglycerolconversion, Front. Chem. Sci. Eng.12(1)(2017)132-144. [74] W. Xue, Z. Wang, Y. Liang, H. Xu, L. Liu, J. Dong, Promoting role of bismuth on hydrotalcite-supported platinum catalysts in aqueous phase oxidation of glycerol to dihydroxyacetone, Catalysts 8(2018) 20. [75] L.G. Possato, W.H. Cassinelli, C.I. Meyer, T. Garetto, S.H. Pulcinelli, C.V. Santilli, L. Martins, Thermal treatments of precursors of molybdenum and vanadium oxides and the formed Mo xVyOz phases active in the oxydehydration of glycerol, Appl. Catal. A Gen. 532(2017) 1-11. [76] L. Liu, B. Wang, Y. Du, Z. Zhong, A. Borgna, Bifunctional Mo3VOx/H4SiW12O40/Al2O3 catalysts for one-step conversion of glycerol to acrylic acid:Catalyst structural evolution and reaction pathways, Appl. Catal. B Environ. 174-175(2015) 1-12. [77] C. Alessandro, S.M. Dolores, G.G. Ester, P. Giuseppe, B. Francesco, C. Patricia, B. Claudia, J.M. Lopez Nieto, C. Fabrizio, Multielement crystalline and pseudocrystalline oxides as efficient catalysts for the direct transformation of glycerol into acrylic acid, ChemSusChem 8(2) (2014) 398-406. [78] C. Li, Q. Zhu, Z. Cui, B. Wang, Y. Fang, T. Tan, Highly efficient and selective production of acrylic acid from 3-hydroxypropionic acid over acidic heterogeneous catalysts, Chem. Eng. Sci. 183(2018) 288-294. [79] Y.S. Yun, T.Y. Kim, D. Yun, K.R. Lee, J.W. Han, J. Yi, Understanding the reaction mechanism of glycerol hydrogenolysis over a CuCr2O4 catalyst, ChemSusChem 10(2) (2017) 442-454. [80] X. Zhao, J. Wang, M. Yang, N. Lei, L. Li, B. Hou, S. Miao, X. Pan, A. Wang, T. Zhang, Selective hydrogenolysis of glycerol to 1,3-propanediol:Manipulating the frustrated Lewis pairs by introducing gold to Pt/WOx, ChemSusChem 10(5) (2017) 819-824. [81] Y. Kang, X. Bu, G. Wang, X. Wang, Q. Li, Y. Feng, A highly active Cu-Pt/SiO2 bimetal for the hydrogenolysis of glycerol to 1,2-propanediol, Catal. Lett. 146(8) (2016) 1408-1414. [82] H.Mitta,P.K.Seelam,S.Ojala,R.L.Keiski,P.Balla,TuningY-zeolitebasedcatalyst withcopperforenhancedactivityandselectivityinvaporphasehydrogenolysis of glycerol to 1,2-propanediol, Appl. Catal. A Gen. 550(2018) 308-319. [83] D.L. Manuale, L.V. Santiago, G.C. Torres, J.H. Sepulveda, P.A. Torresi, C.R. Vera, J.C. Yori, Hydrogenolysis of glycerol to 1,2-propanediol in a continuous flow trickle bed reactor, J. Chem. Technol. Biotechnol. 93(4) (2018) 1050-1064. [84] R. Arundhathi, T. Mizugaki, T. Mitsudome, K. Jitsukawa, K. Kaneda, Highly selective hydrogenolysis of glycerol to 1,3-propanediol over a boehmitesupported platinum/tungsten catalyst, ChemSusChem 6(8) (2013) 1345-1347. [85] M. Gu, Z. Shen, L. Yang, B. Peng, W. Dong, W. Zhang, Y. Zhang, The effect of catalytic structure modification on hydrogenolysis of glycerol into 1,3-propanediol over platinum nanoparticles and ordered mesoporous alumina assembled catalysts, Ind. Eng. Chem. Res. 56(46) (2017) 13572-13581. [86] S.S. Priya, P. Bhanuchander, V.P. Kumar, D.K. Dumbre, S.R. Periasamy, S.K. Bhargava, M. Lakshmi Kantam, K.V.R. Chary, Platinum supported on HMordenite:A highly efficient catalyst for selective hydrogenolysis of glycerol to 1,3-propanediol, ACS Sustain. Chem. Eng. 4(3) (2016) 1212-1222. [87] G.M. Lari, Z. Chen, C. Mondelli, J. Perez-Ramirez, Bifunctional hierarchical zeolite-supported silver catalysts for the conversion of glycerol to allyl alcohol, ChemCatChem 9(12) (2017) 2195-2202. [88] A. Konaka, T. Tago, T. Yoshikawa, H. Shitara, Y. Nakasaka, T. Masuda, Conversion of biodiesel-derived crude glycerol into useful chemicals over a zirconia-iron oxide catalyst, Ind. Eng. Chem. Res. 52(44) (2013) 15509-15515. [89] G. Sanchez, J. Friggieri, A.A. Adesina, B.Z. Dlugogorski, E.M. Kennedy, M. Stockenhuber, Catalytic conversion of glycerol to allyl alcohol; effect of a sacrificial reductant on the product yield, Cat. Sci. Technol. 4(2014) 3090-3098. [90] S. Tazawa, N. Ota, M. Tamura, Y. Nakagawa, K. Okumura, K. Tomishige, Deoxydehydration with molecular hydrogen over ceria-supported rhenium catalyst with gold promoter, ACS Catal. 6(10) (2016) 6393-6397. [91] N.N. Tshibalonza, J.C.M. Monbaliu, Revisiting the deoxydehydration of glycerol towards allyl alcohol under continuous-flow conditions, Green Chem. 19(2017) 3006-3013. [92] Q. Tong, A. Zong, W. Gong, L. Yu, Y. Fan, Rhenium-promoted Pt/WO3/ZrO2:An efficient catalyst for aqueous glycerol hydrogenolysis under reduced H2 pressure, RSC Adv. 6(2016) 86663-86672. [93] M. Edake, M. Dalil, M.J. Darabi Mahboub, J.L. Dubois, G.S. Patience, Catalytic glycerol hydrogenolysis to 1,3-propanediol in a gas-solid fluidized bed, RSC Adv. 7(2017) 3853-3860. [94] T. Yoshikawa, T. Tago, A. Nakamura, A. Konaka, M. Mukaida, T. Masuda, Investigation of reaction routes for direct conversion of glycerol over zirconia-iron oxide catalyst, Res. Chem. Intermed. 37(9) (2011) 1247. [95] P. Lauriol-Garbey, G. Postole, S. Loridant, A. Auroux, V. Belliere-Baca, P. Rey, J. Millet, Acid-base properties of niobium-zirconium mixed oxide catalysts for glycerol dehydration by calorimetric and catalytic investigation, Appl. Catal. B Environ. 106(1) (2011) 94-102. [96] S.D. Blass, R.J. Hermann, N.E. Persson, A. Bhan, L.D. Schmidt, Conversion of glycerol to light olefins and gasoline precursors, Appl. Catal. A Gen. 475(2014) 10-15. [97] C. Deng, L. Leng, X. Duan, J. Zhou, X. Zhou, W. Yuan, Support effect on the bimetallic structure of Ir-Re catalysts and their performances in glycerol hydrogenolysis, J. Mol. Catal. A Chem. 410(2015) 81-88. [98] S. Zhu, X. Gao, Y. Zhu, Y. Li, Promoting effect of WOx on selective hydrogenolysis of glycerol to 1,3-propanediol over bifunctional Pt-WOx/Al2O3 catalysts, J. Mol. Catal. A Chem. 398(2015) 391-398. [99] S. Zhu, X. Gao, Y. Zhu, Y. Li, Tailored mesoporous copper/ceria catalysts for the selective hydrogenolysis of biomass-derived glycerol and sugar alcohols, Green Chem. 18(2016) 782-791. [100] H. Pourzolfaghar, F. Abnisa, W.M.A.W. Daud, M.K. Aroua, Atmospheric hydrodeoxygenation of bio-oil oxygenated model compounds:A review, J. Anal. Appl. Pyrolysis 133(2018) 117-127. [101] F. Mauriello, H. Ariga, M. Musolino, R. Pietropaolo, S. Takakusagi, K. Asakura, Exploringthecatalyticpropertiesofsupportedpalladiumcatalystsinthetransfer hydrogenolysis of glycerol, Appl. Catal. B Environ. 166-167(2015) 121-131. [102] X. Li, C. Zhang, H. Cheng, W. Lin, P. Chang, B. Zhang, Q. Wu, Y. Yu, F. Zhao, A study on the oxygen vacancies in ZnPd/ZnO-Al and their promoting role in glycerol hydrogenolysis, ChemCatChem 7(8) (2015) 1322-1328. [103] L. Yu, J. Yuan, Q. Zhang, Y.M. Liu, H.Y. He, K.N. Fan, Y. Cao, Propylene from renewable resources:Catalytic conversion of glycerol into propylene, ChemSusChem 7(3) (2014) 743-747. [104] Z. Wu, K. Zhao, S. Ge, Z. Qiao, J. Gao, T. Dou, A.C.K. Yip, M. Zhang, Selective conversion of glycerol into propylene:Single-step versus tandem process, ACS Sustain. Chem. Eng. 4(8) (2016) 4192-4207. [105] C.J. Mota, V.L. Goncalves, J.E. Mellizo, A.M. Rocco, J.C. Fadigas, R. Gambetta, Green propene through the selective hydrogenolysis of glycerol over supported iron-molybdenum catalyst:The original history, J. Mol. Catal. A Chem. 422(2016) 158-164. [106] Z. Wu, H. Yan, S. Ge, J. Gao, T. Dou, Y. Li, A.C. Yip, M. Zhang, MoO3 modified Ni2P/Al2O3 as an efficient catalyst for crude glycerol to propylene, Catal. Commun. 92(2017) 80-85. [107] V. Zacharopoulou, E.S. Vasiliadou, A.A. Lemonidou, Exploring the reaction pathways of bioglycerol hydrodeoxygenation to propene over molybdenabased catalysts, ChemSusChem 11(1) (2018) 264-275. [108] D. Sun, Y. Yamada, S. Sato, Efficient production of propylene in the catalytic conversion of glycerol, Appl. Catal. B Environ. 174-175(2015) 13-20. [109] C. Zhang, Q. Lai, J.H. Holles, Ir-Pt bimetallic overlayer catalysts for aqueous phase glycerol hydrodeoxygenation, Appl. Catal. A Gen. 526(2016) 113-125. [110] K. Murata, I. Takahara, M. Inaba, Propane formation by aqueous-phase reforming of glycerol over Pt/H-ZSM5 catalysts, React. Kinet. Catal. Lett. 93(1) (2008) 59-66. [111] C. Lee, M. Aroua, W. Daud, P. Cognet, Y. Peres-Lucchese, P.L. Fabre, O. Reynes, L. Latapie, A review:Conversion of bioglycerol into 1,3-propanediol via biological and chemical method, Renew. Sust. Energ. Rev. 42(2015) 963-972. [112] S.S. Priya, V.P. Kumar, M.L. Kantam, S.K. Bhargava, A. Srikanth, K.V.R. Chary, High efficiency conversion of glycerol to 1,3-propanediol using a novel platinum-tungsten catalyst supported on SBA-15, Ind. Eng. Chem. Res. 54(37) (2015) 9104-9115. [113] M. Conte, C.J. Davies, D.J. Morgan, T.E. Davies, A.F. Carley, P. Johnston, G.J. Hutchings, Modifications of the metal and support during the deactivation and regeneration of Au/C catalysts for the hydrochlorination of acetylene, Cat. Sci. Technol. 3(1) (2013) 128-134. [114] J. Wang, X. Zhao, N. Lei, L. Li, L. Zhang, S. Xu, S. Miao, X. Pan, A. Wang, T. Zhang, Hydrogenolysis of glycerol to 1,3-propanediol under low hydrogen pressure over WO x-supported single/pseudo-single atom Pt catalyst, ChemSusChem 9(8) (2016) 784-790. [115] A. Konaka, T. Tago, T. Yoshikawa, A. Nakamura, T. Masuda, Conversion of glycerol into allyl alcohol over potassium-supported zirconia-iron oxide catalyst, Appl. Catal. B Environ. 146(2014) 267-273. [116] B.D. Costa, M. Peralta, C. Querini, Gas phase dehydration of glycerol Over, lanthanum-modified beta-zeolite, Appl. Catal. A Gen. 472(2014) 53-63. [117] M. Wang, H. Yang, Y. Xie, X. Wu, C. Chen, W. Ma, Q. Dong, Z. Hou, Catalytic transformation of glycerol to 1-propanol by combining zirconium phosphate and supported Ru catalysts, RSC Adv. 6(2016) 29769-29778. [118] D. Di Mondo, D. Ashok, F. Waldie, N. Schrier, M. Morrison, M. Schlaf, Stainless steel as a catalyst for the total deoxygenation of glycerol and levulinic acid in aqueous acidic medium, ACS Catal. 1(4) (2011) 355-364. [119] V. Zacharopoulou, E.S. Vasiliadou, A.A. Lemonidou, One-step propylene formation from bio-glycerol over molybdena-based catalysts, Green Chem. 17(2015) 903-912. |
[1] | Xinqiang You, Kai Zhao, Ling Li, Ting Qiu. Ionic liquids as entrainer in extractive distillation for effectively separating 1-propanol–water azeotropic mixture[J]. 中国化学工程学报, 2022, 49(9): 224-233. |
[2] | Jun Li, Liqiang Zhang, Xiao Zhu, Mengze Zhang, Tai Feng, Xiqiang Zhao, Tao Wang, Zhanlong Song, Chunyuan Ma. Systematic investigation of SO2 adsorption and desorption by porous powdered activated coke: Interaction between adsorption temperature and desorption energy consumption[J]. 中国化学工程学报, 2022, 48(8): 140-148. |
[3] | Xiaomin Qiu, Yuanyuan Shen, Zhengkun Hou, Qi Wang, Zhaoyou Zhu, Yinglong Wang, Jingwei Yang, Jun Gao. Mechanism analysis of solvent selectivity and energy-saving optimization in vapor recompression-assisted extractive distillation for separation of binary azeotrope[J]. 中国化学工程学报, 2022, 46(6): 271-279. |
[4] | Rongzong Li, Zhaoyang Li, Qian Jiang, Zhaoxiang Zhong, Ming Zhou, Weihong Xing. Acid precipitation coupled membrane-dispersion advanced oxidation process (MAOP) to treat crystallization mother liquor of pulp wastewater[J]. 中国化学工程学报, 2020, 28(7): 1911-1917. |
[5] | Hengjun Gai, Shuo Chen, Kaiqiang Lin, Xiaowei Zhang, Chun Wang, Meng Xiao, Tingting Huang, Hongbing Song. Conceptual design of energy-saving stripping process for industrial sour water[J]. 中国化学工程学报, 2020, 28(5): 1277-1284. |
[6] | Yunsong Yu, Chen Zhang, Zaoxiao Zhang, Geoff Wang. Characterizing the catalyst fluidization with field synergy to improve the amine absorption for CO2 capture[J]. 中国化学工程学报, 2019, 27(7): 1608-1617. |
[7] | Jing Fang, Xiaomin Cheng, Zhongyang Li, Hao Li, Chunli Li. A review of internally heat integrated distillation column[J]. 中国化学工程学报, 2019, 27(6): 1272-1281. |
[8] | Hongjia Zhou, Lin Kang, Ming Zhou, Zhaoxiang Zhong, Weihong Xing. Membrane enhanced COD degradation of pulp wastewater using Cu2O/H2O2 heterogeneous Fenton process[J]. Chinese Journal of Chemical Engineering, 2018, 26(9): 1896-1903. |
[9] | Jiangwei Xie, Chunli Li, Fei Peng, Lihui Dong, Shuaiming Ma. Experimental and simulation of the reactive dividing wall column based on ethyl acetate synthesis[J]. Chinese Journal of Chemical Engineering, 2018, 26(7): 1468-1476. |
[10] | Pouria Amani, Elham Mohammadi, Sahar Akhgar. Design aspect of a novel L-shaped pulsed column for liquid-liquid extraction applications: Energy consumption and the characteristics velocity concept[J]. Chinese Journal of Chemical Engineering, 2018, 26(4): 723-730. |
[11] | Carlos Eduardo de Araújo Padilha, Juliana Chris Silva de Azevedo, Francisco Canindé de Sousa Júnior, Sérgio Dantas de Oliveira Júnior, Domingos Fabiano de Santana Souza, Jackson Araújo de Oliveira, Gorete Ribeiro de Macedo, Everaldo Silvino dos Santos. Recovery of polyphenols from camu-camu (Myrciaria dubia H.B.K. McVaugh) depulping residue by cloud point extraction[J]. Chinese Journal of Chemical Engineering, 2018, 26(12): 2471-2476. |
[12] | Lixiang Jiang, Chufu Li, Ming Xu, Aihua Xing, Rui Feng, Jianjun Wu. Investigation on and industrial application of degrading of methanol feed in methanol to propylene process[J]. Chinese Journal of Chemical Engineering, 2018, 26(10): 2102-2111. |
[13] | Davood Hajavi, Norollah Kasiri, Javad Ivakpour. A comparative study of different arrangements for methanol distillation process[J]. , 2016, 24(9): 1201-1212. |
[14] | Xu Yang, Jinsong Zeng, Kefu Chen, Yucheng Feng. CFD modeling of a headboxwith injecting dilution water in a central step diffusion tube[J]. , 2016, 24(10): 1313-1324. |
[15] | Yongming Han, Zhiqiang Geng, Qunxiong Zhu, Xiaoyong Lin. Energy consumption hierarchical analysis based on interpretative structural model for ethylene production[J]. Chinese Journal of Chemical Engineering, 2015, 23(12): 2029-2036. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||