中国化学工程学报 ›› 2019, Vol. 27 ›› Issue (9): 2014-2025.DOI: 10.1016/j.cjche.2018.12.016
• Special Issue on Natural Gas Hydrate • 上一篇 下一篇
Jinlong Cui1, Zhenfeng Sun1, Xiaohui Wang1, Bin Yu2, Shudong Leng2, Guangjin Chen1, Changyu Sun1
收稿日期:
2018-09-19
修回日期:
2018-11-08
出版日期:
2019-09-28
发布日期:
2019-12-04
通讯作者:
Xiaohui Wang, Changyu Sun
基金资助:
Jinlong Cui1, Zhenfeng Sun1, Xiaohui Wang1, Bin Yu2, Shudong Leng2, Guangjin Chen1, Changyu Sun1
Received:
2018-09-19
Revised:
2018-11-08
Online:
2019-09-28
Published:
2019-12-04
Contact:
Xiaohui Wang, Changyu Sun
Supported by:
摘要: Insights into the mechanism of hydrate nucleation are of great significance for the development of hydrate-based technologies, hydrate relevant flow assurance, and the exploration of in situ natural gas hydrates. Compared with the thermodynamics of hydrate formation, understanding the nucleation mechanism is challenging and has drawn substantial attention in recent decades. In this paper, we attempt to give a comprehensive review of the recent progress of studies of clathrate hydrate nucleation. First, the existing hypotheses on the hydrate nucleation mechanism are introduced and discussed. Then, we summarize recent experimental studies on induction time, a key parameter evaluating the velocity of the nucleation process. Subsequently, the memory effect is particularly discussed, followed by the suggestion of several promising research perspectives.
Jinlong Cui, Zhenfeng Sun, Xiaohui Wang, Bin Yu, Shudong Leng, Guangjin Chen, Changyu Sun. Fundamental mechanisms and phenomena of clathrate hydrate nucleation[J]. 中国化学工程学报, 2019, 27(9): 2014-2025.
Jinlong Cui, Zhenfeng Sun, Xiaohui Wang, Bin Yu, Shudong Leng, Guangjin Chen, Changyu Sun. Fundamental mechanisms and phenomena of clathrate hydrate nucleation[J]. Chinese Journal of Chemical Engineering, 2019, 27(9): 2014-2025.
[1] P. Englezos, Clathrate hydrates, Ind. Eng. Chem. Res. 32(7) (1993) 1251-1274. [2] L. Pauling, R.E. Marsh, The structure of chlorine hydrate, Proc. Natl. Acad. Sci. U. S. A. 38(2) (1952) 112-118. [3] W.F. Claussen, A second water structure for inert gas hydrates, J. Chem. Phys. 19(11) (1951) 1425-1426. [4] J.A. Ripmeester, S.T. John, C.I. Ratcliffe, B.M. Powell, A new clathrate hydrate structure, Nature 325(6100) (1987) 135-136. [5] H. Davy, The Bakerian Lecture:On some of the combinations of oxymuriatic gas and oxygene, and on the chemical relations of these principles, to inflammable bodies, Philos. Trans. R. Soc. Lond. 101(1811) 1-35. [6] E.G. Hammerschmidt, Formation of gas hydrates in natural gas transmission lines, Ind. Eng. Chem. 26(8) (1934) 851-855. [7] F. Tzirakis, P. Stringari, N. von Solms, C. Coquelet, G. Kontogeorgis, Hydrate equilibrium data for the CO2+ N2 system with the use of tetra-n-butylammonium bromide (TBAB), cyclopentane (CP) and their mixture, Fluid Phase Equilib. 408(2016) 240-247. [8] N. Maeda, Nucleation curves of methane-propane mixed gas hydrates in the presence of a stainless steel wall, Fluid Phase Equilib. 413(2016) 142-147. [9] P. Ilani-Kashkouli, A.H. Mohammadi, P. Naidoo, D. Ramjugernath, Hydrate phase equilibria for CO2, CH4, or N2+ tetrabutylphosphonium bromide (TBPB) aqueous solution, Fluid Phase Equilib. 411(2016) 88-92. [10] X.H. Wang, H.B. Qin, A. Dandekar, Y.F. Wang, Y.F. Sun, Q.L. Ma, B. Liu, L.Y. Yang, C.Y. Sun, G.J. Chen, Hydrate phase equilibrium of H2/CH4/CO2 ternary gas mixtures and cage occupancy percentage of hydrogen molecules, Fluid Phase Equilib. 403(2015) 160-166. [11] S.C. Sun, Y. Zhang, Y.Y. Kong, C.L. Liu, Y.F. Liu, Preliminary study on measurement technology for hydrate phase equilibrium, Fluid Phase Equilib. 403(2015) 60-69. [12] Q. Sun, X. Guo, W.G. Chapman, A. Liu, L. Yang, J. Zhang, Vapor-hydrate two-phase and vapor-liquid-hydrate three-phase equilibrium calculation of THF/CH4/N2 hydrates, Fluid Phase Equilib. 401(2015) 70-76. [13] D.-L. Zhong, Z. Li, Y.-Y. Lu, D.-J. Sun, Phase equilibrium data of gas hydrates formed from a CO2+ CH4 gas mixture in the presence of tetrahydrofuran, J. Chem. Eng. Data 59(12) (2014) 4110-4117. [14] A.A. Sizikov, A.Y. Manakov, Double gas hydrate of isopropanol and methane, Fluid Phase Equilib. 371(0) (2014) 75-81. [15] K. Yasuda, Y. Oto, R. Shen, T. Uchida, R. Ohmura, Phase equilibrium condition measurements in nitrogen and air clathrate hydrate forming systems at temperatures below freezing point of water, J. Chem. Thermodyn. 67(2013) 143-147. [16] D.-L. Zhong, Y. Ye, C. Yang, Equilibrium conditions for semiclathrate hydrates formed in the CH4+ N2+ O2+ tetra-n-butyl ammonium bromide systems, J. Chem. Eng. Data 56(6) (2011) 2899-2903. [17] Z.G. Sun, L. Sun, Equilibrium conditions of semi-clathrate hydrate dissociation for methane plus tetra-n-butyl ammonium bromide, J. Chem. Eng. Data 55(9) (2010) 3538-3541. [18] X.-S. Li, Z.-M. Xia, Z.-Y. Chen, K.-F. Yan, G. Li, H.-J. Wu, Equilibrium hydrate formation conditions for the mixtures of CO2+ H2+ tetrabutyl ammonium bromide, J. Chem. Eng. Data 55(6) (2010) 2180-2184. [19] K. Yasuda, R. Ohmura, Phase equilibrium for clathrate hydrates formed with methane, ethane, propane, or carbon dioxide at temperatures below the freezing point of water, J. Chem. Eng. Data 53(9) (2008) 2182-2188. [20] W. Lin, A. Delahaye, L. Fournaison, Phase equilibrium and dissociation enthalpy for semi-clathrate hydrate of CO2 plus TBAB, Fluid Phase Equilib. 264(1-2) (2008) 220-227. [21] M. Wu, S. Wang, H. Liu, A study on inhibitors for the prevention of hydrate formation in gas transmission pipeline, J. Nat. Gas Chem. 16(1) (2007) 81-85. [22] Z. Huo, E. Freer, M. Lamar, B. Sannigrahi, D.M. Knauss, E.D. Sloan, Hydrate plug prevention by anti-agglomeration, Chem. Eng. Sci. 56(17) (2001) 4979-4991. [23] H.B. Qin, C.Y. Sun, Z.F. Sun, B. Liu, G.J. Chen, Relationship between the interfacial tension and inhibition performance of hydrate inhibitors, Chem. Eng. Sci. 148(2016) 182-189. [24] H.B. Qin, Z.F. Sun, X.Q. Wang, J.L. Yang, C.Y. Sun, B. Liu, G.J. Chen, Synthesis and evaluation of two new kinetic hydrate inhibitors, Energy Fuel 29(11) (2015) 7135-7141. [25] N.-J. Kim, J. Hwan Lee, Y.S. Cho, W. Chun, Formation enhancement of methane hydrate for natural gas transport and storage, Energy 35(6) (2010) 2717-2722. [26] Z.G. Sun, R. Wang, R. Ma, K. Guo, S. Fan, Natural gas storage in hydrates with the presence of promoters, Energy Convers. Manag. 44(17) (2003) 2733-2742. [27] Y.F. Makogon, Natural gas hydrates-A promising source of energy, J. Nat. Gas Sci. Eng. 2(1) (2010) 49-59. [28] A. Demirbas, Methane hydrates as potential energy resource:Part 2-Methane production processes from gas hydrates, Energy Convers. Manag. 51(7) (2010) 1562-1571. [29] Y.F. Makogon, S.A. Holditch, T.Y. Makogon, Natural gas-hydrates-A potential energy source for the 21st Century, J. Pet. Sci. Eng. 56(1-3) (2007) 14-31. [30] H. Liu, L. Mu, B. Wang, B. Liu, J. Wang, X. Zhang, C. Sun, J. Chen, M. Jia, G. Chen, Separation of ethylene from refinery dry gas via forming hydrate in w/o dispersion system, Sep. Purif. Technol. 116(2013) 342-350. [31] A. Eslamimanesh, A.H. Mohammadi, D. Richon, P. Naidoo, D. Ramjugernath, Application of gas hydrate formation in separation processes:A review of experimental studies, J. Chem. Thermodyn. 46(2012) 62-71. [32] J.A. Ripmeester, S. Alavi, Some current challenges in clathrate hydrate science:Nucleation, decomposition and the memory effect, Curr. Opin. Solid State Mater. 20(6) (2016) 344-351. [33] J.E.D. Sloan, F. Fleyfel, A molecular mechanism for gas hydrate nucleation from ice, AIChE J. 37(1991) 1281-1292. [34] B. Muller-Bongartz, T.R. Wildeman, R.D. Sloan Jr., A hypothesis for hydrate nucleation phenomena, The Second International Offshore and Polar Engineering Conference, International Society of Offshore and Polar Engineers, San Francisco, USA, January, 1992. [35] R.L. Christiansen, E.D. Sloan, Mechanisms and kinetics of hydrate formation, Ann. N. Y. Acad. Sci. 715(1) (1994) 283-305. [36] Z.M. Aman, C.A. Koh, Interfacial phenomena in gas hydrate systems, Chem. Soc. Rev. 45(6) (2016) 1678-1690. [37] M.R. Walsh, C.A. Koh, E.D. Sloan, A.K. Sum, D.T. Wu, Microsecond simulations of spontaneous methane hydrate nucleation and growth, Science 326(5956) (2009) 1095-1098. [38] K. Lekvam, P. Ruoff, A reaction kinetic mechanism for methane hydrate formation in liquid water, J. Am. Chem. Soc. 115(19) (1993) 8565-8569. [39] J. Long, Gas Hydrate Formation Mechanism and Kinetic Inhibition, PhD Thesis. Colorado School of Mines, 1994. [40] B. Kvamme, A new theory for the kinetics of hydrate formation, Proceedings of the Second International Conference on Natural Gas Hydrates, Toulouse, France June, 1996, pp. 131-146. [41] G.J. Chen, T.M. Guo, A new approach to gas hydrate modelling, Chem. Eng. J. 71(2) (1998) 145-151. [42] G.J. Chen, T.M. Guo, Thermodynamic modeling of hydrate formation based on new concepts, Fluid Phase Equilib. 122(1-2) (1996) 43-65. [43] R. Radhakrishnan, B.L. Trout, A new approach for studying nucleation phenomena using molecular simulations:Application to CO2 hydrate clathrates, J. Chem. Phys. 117(4) (2002) 1786-1796. [44] L.C. Jacobson, W. Hujo, V. Molinero, Amorphous precursors in the nucleation of clathrate hydrates, J. Am. Chem. Soc. 132(33) (2010) 11806-11811. [45] L.C. Jacobson, W. Hujo, V. Molinero, Nucleation pathways of clathrate hydrates:Effect of guest size and solubility, J. Phys. Chem. B 114(43) (2010) 13796-13807. [46] M. Lauricella, S. Meloni, N.J. English, B. Peters, G. Ciccotti, Methane clathrate hydrate nucleation mechanism by advanced molecular simulations, J. Phys. Chem. C 118(40) (2014) 22847-22857. [47] G.J. Guo, M. Li, Y.G. Zhang, C.H. Wu, Why can water cages adsorb aqueous methane? A potential of mean force calculation on hydrate nucleation mechanisms, Phys. Chem. Chem. Phys. 11(44) (2009) 10427-10437. [48] G.J. Guo, Y.G. Zhang, H. Liu, Effect of methane adsorption on the lifetime of a dodecahedral water cluster immersed in liquid water:A molecular dynamics study on the hydrate nucleation mechanisms, J. Phys. Chem. C 111(6) (2007) 2595-2606. [49] D. Kashchiev, Nucleation, Butterworth-Heinemann, 2000. [50] D. Kashchiev, D. Verdoes, G.M. van Rosmalen, Induction time and metastability limit in new phase formation, J. Cryst. Growth 110(3) (1991) 373-380. [51] D. Kashchiev, A. Firoozabadi, Induction time in crystallization of gas hydrates, J. Cryst. Growth 250(3-4) (2003) 499-515. [52] C. Wagner, Kinetik der phasenbildung, Angew. Chem. (1939). https://doi.org/10.1002/ange.19390523006. [53] M. Rahmati-Abkenar, M. Manteghian, H. Pahlavanzadeh, Experimental and theoretical investigation of methane hydrate induction time in the presence of triangular silver nanoparticles, Chem. Eng. Res. Des. 120(2017) 325-332. [54] M. Rahmati-Abkenar, M. Manteghian, H. Pahlavanzadeh, Nucleation of ethane hydrate in water containing silver nanoparticles, Mater. Des. 126(2017) 190-196. [55] S.R. Wang, M.J. Yang, W.G. Liu, J.F. Zhao, Y.C. Song, Investigation on the induction time of methane hydrate formation in porous media under quiescent conditions, J. Pet. Sci. Eng. 145(2016) 565-572. [56] P. Linga, C. Haligva, S.C. Nam, J.A. Ripmeester, P. Englezos, Gas hydrate formation in a variable volume bed of silica sand particles, Energy Fuel 23(11) (2009) 5496-5507. [57] S. Li, S. Fan, J. Wang, X. Lang, D. Liang, CO2 capture from binary mixture via forming hydrate with the help of tetra-n-butyl ammonium bromide, J. Nat. Gas Chem. 18(1) (2009) 15-20. [58] L. Jensen, K. Thomsen, N. von Solms, Propane hydrate nucleation:Experimental investigation and correlation, Chem. Eng. Sci. 63(12) (2008) 3069-3080. [59] P. Skovborg, H.J. Ng, P. Rasmussen, U. Mohn, Measurement of induction times for the formation of methane and ethane gas hydrates, Chem. Eng. Sci. 48(3) (1993) 445-453. [60] S.D. McCallum, D.E. Riestenberg, O.Y. Zatsepina, T.J. Phelps, Effect of pressure vessel size on the formation of gas hydrates, J. Pet. Sci. Eng. 56(1-3) (2007) 54-64. [61] V. Natarajan, P.R. Bishnoi, N. Kalogerakis, Induction phenomena in gas hydrate nucleation, Chem. Eng. Sci. 49(13) (1994) 2075-2087. [62] A. Vysniauskas, P.R. Bishnoi, A kinetic study of methane hydrate formation, Chem. Eng. Sci. 38(7) (1983) 1061-1072. [63] C.J. Benmore, A.K. Soper, Supercooling of aqueous solutions subjected to different thermal treatments, J. Chem. Phys. 108(16) (1998) 6558-6560. [64] A.R. Nerheim, T.M. Svartaas, E.J. Samuelsen, Laser light scattering studies of gas hydrate formation kinetics, The Fourth International Offshore and Polar Engineering Conference, International Society of Offshore and Polar Engineers, January, 1994. [65] R.M. Nerheim, Investigation of Gas Hydrate Formation Kinetics by Laser Lightscattering, PhD Thesis. The Norwegian Institute of Technology, 1993. [66] M.H. Yousif, R.B. Dorshow, D.B. Young, Testing of hydrate kinetic inhibitors using laser light scattering technique, Ann. N. Y. Acad. Sci. 715(1) (1994) 330-340. [67] C.Y. Sun, G.J. Chen, G.L. Yue, The induction period of hydrate formation in a flow system, Chin. J. Chem. Eng. 12(4) (2004) 527-531. [68] S. Sun, X. Peng, Y. Zhang, J. Zhao, Y. Kong, Stochastic nature of nucleation and growth kinetics of THF hydrate, J. Chem. Thermodyn. 107(2017) 141-152. [69] P.W. Wilson, A.D.J. Haymet, Hydrate formation and re-formation in nucleating THF/water mixtures show no evidence to support a "memory" effect, Chem. Eng. J. 161(1-2) (2010) 146-150. [70] R. Ohmura, M. Ogawa, K. Yasuoka, Y.H. Mori, Statistical study of clathrate-hydrate nucleation in a water/hydrochlorofluorocarbon system:Search for the nature of the "memory effect", J. Phys. Chem. B 107(22) (2003) 5289-5293. [71] J.S. Parent, P.R. Bishnoi, Investigations into the nucleation behaviour of methane gas hydrates, Chem. Eng. Commun. 144(1) (1996) 51-64. [72] B. Cingotti, A. Sinquin, J.P. Durand, T. Palermo, Study of methane hydrate inhibition mechanisms using copolymers, Ann. N. Y. Acad. Sci. 912(1) (2000) 766-776. [73] P. Servio, P. Englezos, Morphology of methane and carbon dioxide hydrates formed from water droplets, AIChE J. 49(1) (2003) 269-276. [74] J. Dong Lee, R. Susilo, P. Englezos, Methane-ethane and methane-propane hydrate formation and decomposition on water droplets, Chem. Eng. Sci. 60(15) (2005) 4203-4212. [75] R.M. Barrer, A.V.J. Edge, Gas hydrates containing argon, krypton and xenon:Kinetics and energetics of formation and equilibria, Proceedings of the Royal Society of London A:Mathematical, Physical and Engineering Sciences, The Royal Society 1967, pp. 1-24. [76] B.J. Falabella, A Study of Natural Gas Hydrates, PhD Thesis. University of Massachusetts, 1975. [77] P. Linga, R.N. Kumar, P. Englezos, Gas hydrate formation from hydrogen/carbon dioxide and nitrogen/carbon dioxide gas mixtures, Chem. Eng. Sci. 62(16) (2007) 4268-4276. [78] V.V.T. Feklistov, Investigation of Kinetics of Gas Hydrate Formation by Turbidimetry Method, PhD Thesis. Institute of Inorganic Chemistry, Novosibirsk, 2001. [79] W. Ke, T.M. Svartaas, J.T. Kvaloy, B.R. Kosberg, Inhibition-promotion:Dual effects of polyvinylpyrrolidone (PVP) on structure-II hydrate nucleation, Energy Fuel 30(9) (2016) 7646-7655. [80] H.K. Abay, T.M. Svartaas, Effect of ultralow concentration of methanol on methane hydrate formation, Energy Fuel 24(2) (2010) 752-757. [81] D. Posteraro, J. Ivall, M. Maric, P. Servio, New insights into the effect of polyvinylpyrrolidone (PVP) concentration on methane hydrate growth. 2. Liquid phase methane mole fraction, Chem. Eng. Sci. 126(2015) 91-98. [82] H. Sharifi, J. Ripmeester, V.K. Walker, P. Englezos, Kinetic inhibition of natural gas hydrates in saline solutions and heptane, Fuel 117(2014) 109-117. [83] Y.V. Rojas González, Tetrahydrofuran and Natural Gas Hydrates Formation in the Presence of Various Inhibitors, PhD Thesis. Curtin University of Technology, 2011. [84] M.R. Talaghat, Intensification of the performance of kinetic inhibitors in the presence of polyethylene oxide and polypropylene oxide for simple gas hydrate formation in a flow mini-loop apparatus, Fluid Phase Equilib. 289(2) (2010) 129-134. [85] L. Del Villano, M.A. Kelland, G.M. Miyake, E.Y.X. Chen, Effect of polymer tacticity on the performance of poly(N,N-dialkylacrylamide)s as kinetic hydrate inhibitors, Energy Fuel 24(4) (2010) 2554-2562. [86] M. Varma-Nair, C.A. Costello, K.S. Colle, H.E. King, Thermal analysis of polymer-water interactions and their relation to gas hydrate inhibition, J. Appl. Polym. Sci. 103(4) (2007) 2642-2653. [87] B. Kvamme, T. Kuznetsova, K. Aasoldsen, Molecular dynamics simulations for selection of kinetic hydrate inhibitors, J. Mol. Graph. Model. 23(6) (2005) 524-536. [88] B.J. Anderson, J.W. Tester, G.P. Borghi, B.L. Trout, Properties of inhibitors of methane hydrate formation via molecular dynamics simulations, J. Am. Chem. Soc. 127(50) (2005) 17852-17862. [89] Y. Salamat, A. Moghadassi, M. Illbeigi, E. Ali, A.H. Mohammadi, Experimental study of hydrogen sulfide hydrate formation:Induction time in the presence and absence of kinetic inhibitor, J. Energy Chem. 22(1) (2013) 114-118. [90] A. Perrin, O.M. Musa, J.W. Steed, The chemistry of low dosage clathrate hydrate inhibitors, Chem. Soc. Rev. 42(5) (2013) 1996-2015. [91] J.M. Herri, F. Gruy, J.S. Pic, M. Cournil, B. Cingotti, A. Sinquin, Interest of in situ turbidimetry for the characterization of methane hydrate crystallization:Application to the study of kinetic inhibitors, Chem. Eng. Sci. 54(12) (1999) 1849-1858. [92] S. Douïeb, S. Archambault, L. Fradette, F. Bertrand, B. Haut, Effect of the fluid shear rate on the induction time of CO2-THF hydrate formation, Can. J. Chem. Eng. 95(1) (2017) 187-198. [93] N. Maeda, Nucleation curves of methane-propane mixed gas hydrates in hydrocarbon oil, Chem. Eng. Sci. 155(2016) 1-9. [94] Y. Liu, K. Guo, D. Liang, S. Fan, Refrigerant gas hydrate growth under influence of magnetic field, Sci. China Ser. B 33(1) (2003) 89-96. [95] Y.T. Seo, I.L. Moudrakovski, J.A. Ripmeester, J.W. Lee, H. Lee, Efficient recovery of CO2 from flue gas by clathrate hydrate formation in porous silica gels, Environ. Sci. Technol. 39(7) (2005) 2315-2319. [96] A. Adeyemo, R. Kumar, P. Linga, J. Ripmeester, P. Englezos, Capture of carbon dioxide from flue or fuel gas mixtures by clathrate crystallization in a silica gel column, Int. J. Greenhouse Gas Control 4(3) (2010) 478-485. [97] X.F. Sun, K.K. Mohanty, Kinetic simulation of methane hydrate formation and dissociation in porous media, Chem. Eng. Sci. 61(11) (2006) 3476-3495. [98] P. Linga, N. Daraboina, J.A. Ripmeester, P. Englezos, Enhanced rate of gas hydrate formation in a fixed bed column filled with sand compared to a stirred vessel, Chem. Eng. Sci. 68(1) (2012) 617-623. [99] S.A. Bagherzadeh, I.L. Moudrakovski, J.A. Ripmeester, P. Englezos, Magnetic resonance imaging of gas hydrate formation in a bed of silica sand particles, Energy Fuel 25(7) (2011) 3083-3092. [100] W.G. Liu, S.R. Wang, M.J. Yang, Y.C. Song, S.L. Wang, J.F. Zhao, Investigation of the induction time for THF hydrate formation in porous media, J. Nat. Gas Sci. Eng. 24(2015) 357-364. [101] H.B. Roozeboom, Sur l'hydrate de l'acide sulfureux, Recl. Trav. Chim. Pays-Bas 3(2) (1884) 29-72. [102] R.R. Gilpin, A study of factors affecting the ice nucleation temperature in a domestic water supply, Can. J. Chem. Eng. 56(4) (1978) 466-471. [103] I.U.F. Makogon, Hydrates of Natural Gas, PennWell Books, Tulsa, Oklahoma, 1981. [104] I.L. Moudrakovski, A.A. Sanchez, C.I. Ratcliffe, J.A. Ripmeester, Nucleation and growth of hydrates on ice surfaces:New insights from 129Xe NMR experiments with hyperpolarized xenon, J. Phys. Chem. B 105(49) (2001) 12338-12347. [105] C. Giavarini, F. Maccioni, M.L. Santarelli, Formation kinetics of propane hydrates, Ind. Eng. Chem. Res. 42(7) (2003) 1517-1521. [106] J. Zhao, C. Wang, M. Yang, W. Liu, K. Xu, Y. Liu, Y. Song, Existence of a memory effect between hydrates with different structures (I, II, and H), J. Nat. Gas Sci. Eng. 26(2015) 330-335. [107] D.D. Link, E.P. Ladner, H.A. Elsen, C.E. Taylor, Formation and dissociation studies for optimizing the uptake of methane by methane hydrates, Fluid Phase Equilib. 211(1) (2003) 1-10. [108] B.Y. Zhang, Q. Wu, X. Gao, C.L. Liu, Y.G. Ye, Memory effect on hydrate formation and influential factors of its sustainability in new hydrate-based coal mine methane separation method, Int. J. Environ. Pollut. 53(3-4) (2013) 201-212. [109] O.Y. Zatsepina, D. Riestenberg, S.D. McCallum, M. Gborigi, C. Brandt, B.A. Buffett, T.J. Phelps, Influence of water thermal history and overpressure on CO2-hydrate nucleation and morphology, Am. Mineral. 89(8-9) (2004) 1254-1259. [110] H. Sefidroodi, E. Abrahamsen, M.A. Kelland, Investigation into the strength and source of the memory effect for cyclopentane hydrate, Chem. Eng. Sci. 87(2013) 133-140. [111] M.L. Martinez de Baños, O. Carrier, P. Bouriat, D. Broseta, Droplet-based millifluidics as a new tool to investigate hydrate crystallization:Insights into the memory effect, Chem. Eng. Sci. 123(2015) 564-572. [112] B. Sowa, N. Maeda, Statistical study of the memory effect in model natural gas hydrate systems, J. Phys. Chem. A 119(44) (2015) 10784-10790. [113] H. Zeng, L.D. Wilson, V.K. Walker, J.A. Ripmeester, Effect of antifreeze proteins on the nucleation, growth, and the memory effect during tetrahydrofuran clathrate hydrate formation, J. Am. Chem. Soc. 128(9) (2006) 2844-2850. [114] J.D. Lee, P. Englezos, Unusual kinetic inhibitor effects on gas hydrate formation, Chem. Eng. Sci. 61(5) (2006) 1368-1376. [115] J.D. Lee, P. Englezos, Enhancement of the performance of gas hydrate kinetic inhibitors with polyethylene oxide, Chem. Eng. Sci. 60(19) (2005) 5323-5330. [116] E.F. May, R. Wu, M.A. Kelland, Z.M. Aman, K.A. Kozielski, P.G. Hartley, N. Maeda, Quantitative kinetic inhibitor comparisons and memory effect measurements from hydrate formation probability distributions, Chem. Eng. Sci. 107(2014) 1-12. [117] S. Takeya, A. Hori, T. Hondoh, T. Uchida, Freezing-memory effect of water on nucleation of CO2 hydrate crystals, J. Phys. Chem. B 104(17) (2000) 4164-4168. [118] E.D. Sloan, S. Subramanian, P.N. Matthews, J.P. Lederhos, A.A. Khokhar, Quantifying hydrate formation and kinetic inhibition, Ind. Eng. Chem. Res. 37(8) (1998) 3124-3132. [119] P.M. Rodger, Melting and memory, Gas Hydrates:Challenges for the Future, Annals of the New York Academy of Sciences, 912(1), 2000, pp. 474-482. [120] S. Gao, W. House, W.G. Chapman, NMR/MRI study of clathrate hydrate mechanisms, J. Phys. Chem. B 109(41) (2005) 19090-19093. [121] M. Oshima, W. Shimada, S. Hashimoto, A. Tani, K. Ohgaki, Memory effect on semiclathrate hydrate formation:A case study of tetragonal tetra-n-butyl ammonium bromide hydrate, Chem. Eng. Sci. 65(20) (2010) 5442-5446. [122] P. Buchanan, A.K. Soper, H. Thompson, R.E. Westacott, J.L. Creek, G. Hobson, C.A. Koh, Search for memory effects in methane hydrate:Structure of water before hydrate formation and after hydrate decomposition, J. Chem. Phys. 123(16) (2005) 164507. [123] J. Vatamanu, P.G. Kusalik, Observation of two-step nucleation in methane hydrates, Phys. Chem. Chem. Phys. 12(45) (2010) 15065-15072. [124] S.A. Bagherzadeh, S. Alavi, J. Ripmeester, P. Englezos, Formation of methane nanobubbles during hydrate decomposition and their effect on hydrate growth, J. Chem. Phys. 142(21) (2015), 214701. [125] S.A. Bagherzadeh, S. Alavi, J.A. Ripmeester, P. Englezos, Evolution of methane during gas hydrate dissociation, Fluid Phase Equilib. 358(0) (2013) 114-120. [126] M. Matsumoto, Y. Wada, A. Oonaka, K. Onoe, Polymorph control of glycine by antisolvent crystallization using nitrogen minute-bubbles, J. Cryst. Growth 373(2013) 73-77. [127] B.C. Knott, J.L. LaRue, A.M. Wodtke, M.F. Doherty, B. Peters, Communication:Bubbles, crystals, and laser-induced nucleation, J. Chem. Phys. 134(17) (2011), 171102. [128] T. Uchida, K. Yamazaki, K. Gohara, Gas nanobubbles as nucleation acceleration in the gas-hydrate memory effect, J. Phys. Chem. C 120(47) (2016) 26620-26629. [129] T. Uchida, K. Yamazaki, K. Gohara, Generation of micro- and nano-bubbles in water by dissociation of gas hydrates, Korean J. Chem. Eng. 33(5) (2016) 1749-1755. [130] H. Zeng, I.L. Moudrakovski, J.A. Ripmeester, V.K. Walker, Effect of antifreeze protein on nucleation, growth and memory of gas hydrates, AIChE J. 52(9) (2006) 3304-3309. |
[1] | Wensheng Li, Liangyuan Qi, Daolin Ye, Wei Cai, Weiyi Xing. Facile modification of aluminum hypophosphate and its flame retardancy for polystyrene[J]. 中国化学工程学报, 2023, 60(8): 90-98. |
[2] | Ming Liu, Ying Li, Rui Wang, Guoqiang Shao, Pengpeng Lv, Jun Li, Qingshan Zhu. Uniform deposition of ultra-thin TiO2 film on mica substrate by atmospheric pressure chemical vapor deposition: Effect of precursor concentration[J]. 中国化学工程学报, 2023, 60(8): 99-107. |
[3] | Hui Jiang, Zijian Zhao, Ning Yu, Yi Qin, Zhengwei Luo, Wenhua Geng, Jianliang Zhu. Synthesis, characterization, and performance comparison of boron using adsorbents based on N-methyl-D-glucosamine[J]. 中国化学工程学报, 2023, 59(7): 16-31. |
[4] | Chaobo Zhang, Xiaoyong Yang, Jian Dai, Wenxia Liu, Hang Yang, Zhishan Bai. Efficient extraction of phenol from wastewater by ionic micro-emulsion method: Anionic and cationic[J]. 中国化学工程学报, 2023, 58(6): 137-145. |
[5] | Jianhui Zhou, Xin Lai, Jianfeng Hu, Haijie Qi, Shan Liu, Zhengguo Zhang. Design of a graphene oxide@melamine foam/polyaniline@erythritol composite phase change material for thermal energy storage[J]. 中国化学工程学报, 2023, 58(6): 282-290. |
[6] | Sanya Du, Xiaomin Han, Wenjiu Cai, Jinlong Zhu, Xiaobai Ma, Songbai Han, Dongfeng Chen, Yusheng Zhao, Hui Li, Hailong Lu, Xiaohui Yu. Formation of the structure-II gas hydrate from low-concentration propane mixed with methane[J]. 中国化学工程学报, 2023, 58(6): 306-314. |
[7] | Bin Lin, Wenyao Chen, Nan Song, Zhihua Zhang, Qianhong Wang, Wei Du, Xinggui Zhou, Xuezhi Duan. Mechanistic insights into propylene oxidation to acrolein over gold catalysts[J]. 中国化学工程学报, 2023, 57(5): 39-49. |
[8] | Yaqiao Liu, Shuozhen Hu, Xinsheng Zhang, Shigang Sun. Investigation of photoelectrocatalytic degradation mechanism of methylene blue by α-Fe2O3 nanorods array[J]. 中国化学工程学报, 2023, 57(5): 162-172. |
[9] | Shanshan Mao, Tao Shen, Qing Zhao, Tong Han, Fan Ding, Xin Jin, Manglai Gao. Selective capture of silver ions from aqueous solution by series of azole derivatives-functionalized silica nanosheets[J]. 中国化学工程学报, 2023, 57(5): 319-328. |
[10] | Shanwei Xiong, Li Zhou, Yiyang Dai, Xu Ji. Attention-based long short-term memory fully convolutional network for chemical process fault diagnosis[J]. 中国化学工程学报, 2023, 56(4): 1-14. |
[11] | Junao Zhu, Zhirong Yang, Yuanhan Chen, Mingming Chen, Zhen Liu, Yueqiang Cao, Jing Zhang, Gang Qian, Xinggui Zhou, Xuezhi Duan. Mechanistic insights into the active intermediates of 2,6-diaminopyridine dinitration[J]. 中国化学工程学报, 2023, 56(4): 160-168. |
[12] | Tinghao Jia, Yunbo Yu, Qing Liu, Yao Yang, Ji-Jun Zou, Xiangwen Zhang, Lun Pan. Theoretical and experimental study on the inhibition of jet fuel oxidation by diarylamine[J]. 中国化学工程学报, 2023, 56(4): 225-232. |
[13] | Tatyana P. Adamova, Sergey S. Skiba, Andrey Yu. Manakov, Sergey Y. Misyura. Growth rate of CO2 hydrate film on water–oil and water–gaseous CO2 interface[J]. 中国化学工程学报, 2023, 56(4): 266-272. |
[14] | Jiaxin Wu, Chenxiao Wang, Xianliang Meng, Haichen Liu, Ruizhi Chu, Guoguang Wu, Weisong Li, Xiaofeng Jiang, Deguang Yang. Enhancement of catalytic and anti-carbon deposition performance of SAPO-34/ZSM-5/quartz films in MTA reaction by Si/Al ratio regulation[J]. 中国化学工程学报, 2023, 56(4): 314-324. |
[15] | Qiongna Xiao, Yuyan Jiang, Weiqiang Yuan, Jingjing Chen, Haohong Li, Huidong Zheng. Styrene epoxidation catalyzed by polyoxometalate/quaternary ammonium phase transfer catalysts: The effect of cation size and catalyst deactivation mechanism[J]. 中国化学工程学报, 2023, 55(3): 192-201. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||