[1] BP Statistical Review of World Energy2017. [2] R. Ghezelbash, M. Farzaneh-Gord, M. Sadi, Performance assessment of vortex tube and vertical ground heat exchanger in reducing fuel consumption of conventional pressure drop stations, Appl. Therm. Eng. 102(2016) 213-226. [3] W.J. Kostowski, S. Usón, Comparative evaluation of a natural gas expansion plant integrated with an IC engine and an organic Rankine cycle, Energy Convers. Manag. 75(2013) 509-516. [4] M. Farzaneh-Gord, M. Deymi-Dashtebayaz, A new approach for enhancing performance of a gas turbine (case study:Khangiran refinery), Appl. Energy 86(12) (2009) 2750-2759. [5] R. Ghezelbash, M. Farzaneh-Gord, H. Behi, M. Sadi, H.S. Khorramabady, Performance assessment of a natural gas expansion plant integrated with a vertical groundcoupled heat pump, Energy 93(Part 2) (2015) 2503-2517. [6] M. Farzaneh-Gord, M. Jannatabadi, Simulation of single acting natural gas Reciprocating Expansion Engine based on ideal gas model, J. Nat. Gas Sci. Eng. 21(2014) 669-679. [7] S. Sanaye, A. Mohammadi Nasab, Modeling and optimizing a CHP system for natural gas pressure reduction plant, Energy 40(1) (2012) 358-369. [8] M.A. Neseli, O. Ozgener, L. Ozgener, Energy and exergy analysis of electricity generation from natural gas pressure reducing stations, Energy Convers. Manag. 93(2015) 109-120. [9] T.B. He, Y.L. Ju, Design and optimization of natural gas liquefaction process by utilizing gas pipeline pressure energy, Appl. Therm. Eng. 57(1-2) (2013) 1-6. [10] N. Fathizadeh, A. Mohebbi, S. Soltaninejad, M. Iranmanesh, Design and simulation of high pressure cyclones for a gas city gate station using semi-empirical models, genetic algorithm and computational fluid dynamics, J. Nat. Gas Sci. Eng. 26(2015) 313-329. [11] M. Naderi, G. Ahmadi, M. Zarringhalam, O. Akbari, E. Khalili, Application of water reheating system for waste heat recovery in NG pressure reduction stations, with experimental verification, Energy 162(2018) 1183-1192. [12] Z. Yang, X. Su, F. Ma, L. Yu, H. Wang, An innovative environmental control system of subway, J. Wind Eng. Ind. Aerodyn. 147(2015) 120-131. [13] K. Akhlaghi, H. Eftekhari, M. Farzaneh-Gord, M. Khatib, M. Hassani, Solar heat utilization in Birjand natural gas pressure reduction, a thermo-economic analysis, Int. J. Chem. Environ. Eng. 2(4) (2011) 267-275. [14] M. Farzaneh-Gord, A. Arabkoohsar, M. Deymi Dasht-bayaz, V. Farzaneh-Kord, Feasibility of accompanying uncontrolled linear heater with solar system in natural gas pressure drop stations, Energy 41(2012) 420-428. [15] E. Ashouri, F. Veisy, M. Asadi, H. Azizpour, A. Sadr, Influence of tube arrangement on the thermal performance of indirect water bath heaters, J. Chem. Pet. Eng. 47(2) (2013) 69-81. [16] E. Ashouri, F. Veysi, E. Shojaeizadeh, M. Asadi, The minimum gas temperature at the inlet of regulators in natural gas pressure reduction stations (CGS) for energy saving in water bath heaters, J. Nat. Gas Sci. Eng. 21(2014) 230-240. [17] M. Farzaneh-Gord, A. Arabkoohsar, M. Deymi Dasht-bayaz, L. Machado, R.N.N. Koury, Energy and exergy analysis of natural gas pressure reduction points equipped with solar heat and controllable heaters, Renew. Energy 72(2014) 258-270. [18] S.H. Azizi, A. Rashidmardani, M.R. Andalibi, Study of preheating natural gas in gas pressure reduction station by the flue gas of indirect water bath heater, Int. J. Sci. Eng. Investig. 3(27) (2014) 17-22. [19] M. Farzaneh-Gord, R. Ghezelbash, A. Arabkoohsar, L. Pilevari, L. Machado, R.N.N. Koury, Employing geothermal heat exchanger in natural gas pressure drop station in order to decrease fuel consumption, Energy 83(2015) 164-176. [20] A. Zabihi, M. Taghizadeh, New energy-saving temperature controller for heater at natural gas gate station, J. Nat. Gas Sci. Eng. 27(2015) 1043-1049. [21] A. Arabkoohsar, M. Farzaneh-Gord, M. Deymi-Dashtebayaz, L. Machado, R.N.N. Koury, A new design for natural gas pressure reduction points by employing a turbo expander and a solar heating set, Renew. Energy 81(2015) 239-250. [22] M. Farzaneh-Gord, R. Ghezelbash, M. Sadi, A.J. Moghadam, Integration of vertical ground-coupled heat pump into a conventional natural gas pressure drop station:Energy, economic and CO2 emission assessment, Energy 112(2016) 998-1014. [23] V. Farzaneh-Kord, A.B. Khoshnevis, A. Arabkoohsar, M. Deymi-Dashtebayaz, M. Aghili, M. Khatib, M. Kargaran, M. Farzaneh-Gord, Defining a technical criterion for economic justification of employing CHP technology in city gate stations, Energy 111(2016) 389-401. [24] A. Arabkoohsar, K.A.R. Ismail, L. Machado, R.N.N. Koury, Energy consumption minimization in an innovative hybrid power production station by employing PV and evacuated tube collector solar thermal systems, Renew. Energy 93(2016) 424-441. [25] M. Olfati, M. Bahiraei, S. Heidari, F. Veysi, A comprehensive analysis of energy and exergy characteristics for a natural gas city gate station considering seasonal variations, Energy 155(2018) 721-733. [26] D. Borelli, F. Devia, E.L. Cascio, C. Schenone, Energy recovery from natural gas pressure reduction stations:Integration with low temperature heat sources, Energy Convers. Manag. 159(2018) 274-283. [27] S. Salari, K. Goudarzi, Heat transfer enhancement and fuel consumption reduction in heaters of CGS gas stations, Case Stud. Therm. Eng. 10(2017) 641-649. [28] S. Salari, K. Goudarzi, Intensification of heat transfer in heater tubes of city gas stations using spiral spring inserts, Therm. Sci. Eng. Prog. 3(2017) 123-132. [29] A.R. Rahmati, M. Reiszadeh, An experimental study on the effects of the use of multiwalled carbon nanotubes in ethylene glycol/water-based fluid with indirect heaters in gas pressure reducing stations, Appl. Therm. Eng. 134(2018) 107-117. [30] S. Yang, L. Zhang, H. Xu, Experimental study on convective heat transfer and flow resistance characteristics of water flow in twisted elliptical tubes, Appl. Therm. Eng. 31(14-15) (2011) 2981-2991. [31] M. Khoshvaght-Aliabadi, Z. Arani, F. Rahimpour, Influence of Al2O3-H2O nanofluid on performance of twisted minichannels, Adv. Powder Technol. 27(2016) 1514-1525. [32] M. Khoshvaght-Aliabadi, Z. Arani-Lahtari, Proposing new configurations for twisted square channel (TSC):Nanofluid as working fluid, Appl. Therm. Eng. 108(2016) 709-719. [33] A. Feizabadi, M. Khoshvaght-Aliabadi, A.B. Rahimia, Numerical investigation on Al2O3/water nanofluid flow through twisted serpentine tube with empirical validation, Appl. Therm. Eng. 137(2018) 296-309. [34] X. Tan, D. Zhu, G. Zhou, L. Yang, 3D numerical simulation on the shell side heat transfer and pressure drop performances of twisted oval tube heat exchanger, Int. J. Heat Mass Transf. 65(2013) 244-253. [35] S. Eiamsa-ard, P. Promthaisong, C. Thianpong, M. Pimsarn, V. Chuwattanakul, Influence of three-start spirally twisted tube combined with triple-channel twisted tape insert on heat transfer enhancement, Chem. Eng. Process. 102(2016) 117-129. [36] Y. Hong, J. Dua, S. Wang, Experimental heat transfer and flow characteristics in a spiral grooved tube with overlapped large/small twin twisted tapes, Int. J. Heat Mass Transf. 106(2017) 1178-1190. [37] L. Todd, Some comments on steady, laminar flow through twisted pipes, J. Eng. Math. 11(1) (1977) 29-48. [38] L. Zhang, S. Yang, H. Xu, Experimental study on condensation heat transfer characteristics of steam on horizontal twisted elliptical tubes, Appl. Energy 97(2012) 881-887. [39] M. Khoshvaght-Aliabadi, Z. Arani-Lahtari, Forced convection in twisted minichannel (TMC) with different cross section shapes:A numerical study, Appl. Therm. Eng. 93(2016) 101-112. [40] J. Cheng, Z. Qian, Q. Wang, Analysis of heat transfer and flow resistance of twisted oval tube in low Reynolds number flow, Int. J. Heat Mass Transf. 109(2017) 761-777. [41] Y. Hong, X. Deng, L. Zhang, 3D numerical study on compound heat transfer enhancement of converging-diverging tubes equipped with twin twisted tapes, Chin. J. Chem. Eng. 20(3) (2012) 589-601. [42] M. Sheikholeslami, M. Jafaryar, Z. Li, Second law analysis for nanofluid turbulent flow inside a circular duct in presence of twisted tape turbulators, J. Mol. Liq. 263(2018) 489-500. [43] M. Pourramezan, H. Ajam, Modeling for thermal augmentation of turbulent flow in a circular tube fitted with twisted conical strip inserts, Appl. Therm. Eng. 105(2016) 509-518. [44] C.-C. Wu, C.-K. Chen, Y.-T. Yang, K.-H. Huang, Numerical simulation of turbulent flow forced convection in a twisted elliptical tube, Int. J. Therm. Sci. 132(2018) 199-208. [45] K. Shaji Ranjith, Numerical analysis on a double pipe heat exchanger with twisted tape induced swirl flow on both sides, Procedia Technol. 24(2016) 436-443. [46] FLUENT Inc., FLUENT User's Guide, Version 6, vol. 3, 2006[Lebanon, New Hampshire, USA]. |