[1] E.C. Donaldson, G.V. Chilingarian, T.F. Yen, Enhanced Oil Recovery, II:Processes and Operations, Elsevier, 1989. [2] W. Xu, S.C. Ayirala, D.N. Rao, Wettability alterations due to crude oil composition and an anionic surfactant in petroleum reservoirs, J. Adhes. Sci. Technol. 20(2006) 693-704. [3] M. Lashkarbolooki, S. Ayatollahi, Evaluation of effect of temperature and pressure on the dynamic interfacial tension of crude oil/aqueous solutions containing chloride anion through experimental and modelling approaches, Can. J. Chem. Eng. 96(2018) 1396-1402. [4] M. Lashkarbolooki, S. Ayatollahi, Experimental investigation on CO2-light crude oil interfacial and swelling behavior, Chin. J. Chem. Eng. 26(2018) 373-379. [5] T. Austad, Water-based EOR in Carbonates and Sandstones:New Chemical Understanding of the EOR Potential Using "Smart Water", Enhanced oil Recovery Field Case Studies, Elsevier, (2013) 301-335. [6] M.A. Ahmadi, J. Sheng, Performance improvement of ionic surfactant flooding in carbonate rock samples by use of nanoparticles, Pet. Sci. 13(2016) 725-736. [7] M. Lashkarbolooki, M. Riazi, S. Ayatollahi, Investigation of effects of salinity, temperature, pressure, and crude oil type on the dynamic interfacial tensions, Chem. Eng. Res. Des. 115(2016) 53-65. [8] M. Lashkarbolooki, S. Ayatollahi, M. Riazi, Mechanistic study on the dynamic interfacial tension of crude oil+water systems:experimental and modeling approaches, J. Ind. Eng. Chem. 35(2016) 408-416. [9] S. Strand, T. Puntervold, T. Austad, Water based EOR from clastic oil reservoirs by wettability alteration:a review of chemical aspects, J. Pet. Sci. Eng. 146(2016) 1079-1091. [10] D.R. Alves, J.S. Carneiro, I.F. Oliveira, F. Façanha Jr., A.F. Santos, C. Dariva, E. Franceschi, M. Fortuny, Influence of the salinity on the interfacial properties of a Brazilian crude oil-brine systems, Fuel 118(2014) 21-26. [11] T. Puntervold, S. Strand, R. Ellouz, T. Austad, Modified seawater as a smart EOR fluid in chalk, J. Pet. Sci. Eng. 133(2015) 440-443. [12] M. Lashkarbolooki, S. Ayatollahi, Experimental and modeling investigation of dynamic interfacial tension of asphaltenic-acidic crude oil/aqueous phase containing different ions, Chin. J. Chem. Eng. 25(2017) 1820-1830. [13] C. Dang, L. Nghiem, N. Nguyen, Z. Chen, Q. Nguyen, Mechanistic modeling of low salinity water flooding, J. Pet. Sci. Eng. 146(2016) 191-209. [14] M. Lashkarbolooki, S. Ayatollahi, Performance of sea water dilution on the surface free energies of the crude oils in water-flooded carbonate rock, J. Adhes. Sci. Technol. 32(2018) 1359-1368. [15] M. Lashkarbolooki, S. Ayatollahi, M. Riazi, Mechanistical study of effect of ions in smart water injection into carbonate oil reservoir, Process. Saf. Environ. Prot. 105(2017) 361-372. [16] B. Kumar, Effect of Salinity on the Interfacial Tension of Model and Crude Oil Systems, Ph D. Thesis, University of Calgary, Canada, 2012. [17] A. Badakshan, P. Bakes, The Influence of Temperature and Surfactant Concentration on Interfacial Tension of Saline Water and Hydrocarbon Systems in Relation to Enhanced Oil Recovery by Chemical Flooding, Society of Petroleum Engineers, USA, 1990, 020295. [18] B.-Y. Cai, J.-T. Yang, T.-M. Guo, Interfacial tension of hydrocarbon+water/brine systems under high pressure, J. Chem. Eng. Data 41(1996) 493-496. [19] N. Ikeda, M. Aratono, K. Motomura, Thermodynamic study on the adsorption of sodium chloride at the water/hexane interface, J. Colloid Interface Sci. 149(1992) 208-215. [20] R. Aveyard, D. Haydon, Thermodynamic properties of aliphatic hydrocarbon/water interfaces, Trans. Faraday Soc. 61(1965) 2255-2261. [21] E. Isaacs, K. Smolek, Interfacial tension behavior of Athabasca bitumen/aqueous surfactant systems, Can. J. Chem. Eng. 61(1983) 233-240. [22] N. Aske, H. Kallevik, J. Sjöblom, Determination of saturate, aromatic, resin, and asphaltenic (SARA) components in crude oils by means of infrared and nearinfrared spectroscopy, Energy Fuel 15(2001) 1304-1312. [23] M. Lashkarbolooki, S. Ayatollahi, Effect of asphaltene and resin on interfacial tension of acidic crude oil/sulfate aqueous solution:experimental study, Fluid Phase Equilib. 414(2016) 149-155. [24] M. Lashkarbolooki, S. Ayatollahi, Effects of asphaltene, resin and crude oil type on the interfacial tension of crude oil/brine solution, Fuel 223(2018) 261-267. [25] F. Ameli, M. Hosseinzadeh, A. Hemmati-Sarapardeh, M. Salehzadeh, B. Dabir, Stateof-the-art adaptive mesh generator implementation for dynamic asphaltene deposition in four-phase flow simulator in near well-bore region, J. Taiwan Inst. Chem. Eng. 65(2016) 242-255. [26] P.M. Spiecker, K.L. Gawrys, C.B. Trail, P.K. Kilpatrick, Effects of petroleum resins on asphaltene aggregation and water-in-oil emulsion formation, Colloids Surf. A Physicochem. Eng. Asp. 220(2003) 9-27. [27] T.E. Havre, J. Sjöblom, J.E. Vindstad, Oil/water-partitioning and interfacial behavior of naphthenic acids, J. Dispers. Sci. Technol. 24(2003) 789-801. [28] M. Lashkarbolooki, M. Riazi, F. Hajibagheri, S. Ayatollahi, Low salinity injection into asphaltenic-carbonate oil reservoir, mechanistical study, J. Mol. Liq. 216(2016) 377-386. [29] M. Lashkarbolooki, S. Ayatollahi, M. Riazi, The impacts of aqueous ions on interfacial tension and wettability of an asphaltenic-acidic crude oil reservoir during smart water injection, J. Chem. Eng. Data 59(2014) 3624-3634. [30] M. Lashkarbolooki, M. Riazi, S. Ayatollahi, A.Z. Hezave, Synergy effects of ions, resin, and asphaltene on interfacial tension of acidic crude oil and low-high salinity brines, Fuel 165(2016) 75-85. [31] V. Pauchard, J.P. Rane, S. Banerjee, Asphaltene-laden interfaces form soft glassy layers in contraction experiments:a mechanism for coalescence blocking, Langmuir 30(2014) 12795-12803. [32] J. Drelich, C. Fang, C. White, Measurement of interfacial tension in fluid-fluid systems, Encycl. Surf. Colloid Sci. 3(2002) 3158-3163. [33] H.W. Yarranton, H. Alboudwarej, R. Jakher, Investigation of asphaltene association with vapor pressure osmometry and interfacial tension measurements, Ind. Eng. Chem. Res. 39(2000) 2916-2924. [34] S. Gangolli, The dictionary of substances and their effects (DOSE), Royal Society of chemistry, 2007. [35] T. Al-Sahhaf, A. Elkamel, A. Suttar Ahmed, A. Khan, The influence of temperature, pressure, salinity, and surfactant concentration on the interfacial tension of the noctane-water system, Chem. Eng. Commun. 192(2005) 667-684. [36] J. Kaliyugarasan, Surface Chemistry Study of Low Salinity Waterflood, Ph D Thesis, The University of Bergen, Norway, 2013. [37] P.C. Myint, A. Firoozabadi, Thin liquid films in improved oil recovery from lowsalinity brine, Curr. Opin. Colloid Interface Sci. 20(2015) 105-114. [38] J. Buckley, K. Takamura, N. Morrow, Influence of electrical surface charges on the wetting properties of crude oils, SPE Reserv. Eng. 4(1989) 332-340. [39] W. Xu, Experimental Investigation of Dynamic Interfacial Interactions at Reservoir Conditions, Master Thesis, Louisiana State University, USA, 2005. [40] T.D. Gurkov, D.T. Dimitrova, K.G. Marinova, C. Bilke-Crause, C. Gerber, I.B. Ivanov, Ionic surfactants on fluid interfaces:determination of the adsorption; role of the salt and the type of the hydrophobic phase, Colloids Surf. A Physicochem. Eng. Asp. 261(2005) 29-38. [41] D.E. Tambe, M.M. Sharma, Factors controlling the stability of colloid-stabilized emulsions:II. A model for the rheological properties of colloid-laden interfaces, J. Colloid Interface Sci. 162(1994) 1-10. [42] S. Zarkar, V. Pauchard, U. Farooq, A. Couzis, S. Banerjee, Interfacial properties of asphaltenes at toluene-water interfaces, Langmuir 31(2015) 4878-4886. |