[1] Z. Wang, X.H. Zhang, Y. Huang, H. Wang, Comprehensive evaluation of pharmaceuticals and personal care products (PPCPs) in typical highly urbanized regions across China, Environ. Pollut. 204(2015) 223-232. [2] T.H. Grossman, Tetracycline antibiotics and resistance, CSH Perspect Med. 6(4) (2016) 25-36. [3] M.E. Parolo, M.C. Savini, J.M. Vallés, Tetracycline adsorption on montmorillonite:pH and ionic strength effects, Appl. Clay Sci. 40(1-4) (2008) 0-186. [4] E. Tanis, K. Hanna, E. mmanuel, Experimental and modeling studies of sorption of tetracycline onto iron oxides-coated quartz, Colloids Surf. 327(1-3) (2008) 57-63. [5] C.P. Okoli, A.E. Ofomaja, Degree of time dependency of kinetic coefficient as a function of adsorbate concentration; new insights from adsorption of tetracycline onto monodispersed starch-stabilized magnetic nanocomposite, J. Environ. Manag. 218(jul.15) (2018) 139-147. [6] H. Xia, J. Chen, X. Chen, K. Huang, Y. Wu, Effects of tetracycline residuals on humification, microbial profile and antibiotic resistance genes during vermicomposting of dewatered sludge, Environ. Pollut. 252(2019) 1068-1077. [7] A.C. Martins, O. Pezoti, A.L. Cazetta, K.C. Bedin, D.A.S. Yamazaki, G.F.G. Bandoch, V.C. Almeida, Removal of tetracycline by NaOH-activated carbon produced from macadamia nut shells:Kinetic and equilibrium studies, Chem. Eng. J. 260(2015) 291-299. [8] K. Esquivel, L.G. Arriaga, F.J. Rodríguez, L. Martínez, L.A. Godínez, Development of a TiO2 modified optical fiber electrode and its incorporation into a photoelectrochemical reactor for wastewater treatment, Water Res. 43(14) (2009) 593-3603. [9] C. Teodosiu, A.F. Gilca, G. Barjoveanu, S. Fiore, Emerging pollutants removal through advanced drinking water treatment:a review on processes and environmental performances assessment, J. Clean. Prod. 197(2018) 1210-1221. [10] A. Chen, C. Shang, J. Shao, Carbon disulfide-modified magnetic ion-imprinted chitosan-Fe(III):A novel adsorbent for simultaneous removal of tetracycline and cadmium, Carbohyd. Polym. Carbohydrate Polymers 155(Complete) (2017) 19-27. [11] V. Homem, S. Lúcia, Degradation and removal methods of antibiotics from aqueous matrices-A review, J. Environ. Manag. 92(10) (2011) 2304-2347. [12] F. Saadati, N. Keramati, M.M. Ghazi, Influence of parameters on the photocatalytic degradation of tetracycline in wastewater:A review, Crit. Rev. Environ. Sci. Technol. (2016) 1-26. [13] W. Xiong, G. Zeng, Z. Yang, Adsorption of tetracycline antibiotics from aqueous solutions on nanocomposite multi-walled carbon nanotube functionalized MIL-53(Fe) as new adsorbent, Sci. Total Environ. 627(2018) 235-244. [14] A. Banerjee, R. Gokhale, S. Bhatnagar, J. Jog, M. Bhardwaj, B. Lefez, B. Hannoyer, S. Ogale, MOF derived porous carbon-Fe3O4 nanocomposite as a high performance recyclable environmental super adsorbent, Mater. Chem. 22(37) (2012) 19694-19699. [15] Emad K. Radwan, H.A.G. Hany, S.M. Ahmed, H.L. Cooper, H.B. Ahmed, A. Gopal, Preparation and characterization of humic acid-carbon hybrid materials as adsorbents for organic micro-pollutants, Environ. Sci. Pollut. Res. 22(16) (2015) 12035-12049. [16] H. Chen, R. Berndtsson, M. Ma, Characterization of insolubilized humic acid and its sorption behaviors, Environ. Geol. 57(8) (2009) 1847-1853. [17] R. Ke, J. Luo, L. Sun, Z. Wang, P.A. Spear, Predicting bioavailability and accumulation of organochlorine pesticides by japanese medaka in the presence of humic acid and natural organic matter using passive sampling membranes, Environ. Sci. Technol. 41(19) (2007) 6698-6703. [18] C.E. Clapp, M.H.B. Hayes, N. Senesi, Adsorption of pesticides by humic acids from organic amendments and soils, Humic Substances Chem. Contaminants 6(2001) 129-153. [19] T.H. Nguyen, K.U. Goss, W.P. Ball, Polyparameter linear free energy relationships for estimating the equilibrium partition of organic compounds between water and the natural organic matter in soils and sediments, Environ. Sci. Technol. 39(4) (2005) 913-924. [20] Iso Christl, Mercedes Ruiz, J.R. Schmidt, Joel A. Pedersen, Clarithromycin and tetracycline binding to soil humic acid in the absence and presence of calcium, Environ. Sci. Technol. 50(2016) 9933-9942. [21] Y. Qi, M. Yang, W. Xu, Natural polysaccharides-modified graphene oxide for adsorption of organic dyes from aqueous solutions, J. Colloid Interface Sci. 486(2017) 84-96. [22] Ć.P. Irmina, M.J. Agnieszka, J. Maria, D. Magdalena, B. Jakub, J. Elżbieta, K. Dorota, Humic acid and biochar as specific sorbents of pesticides, J. Soils Sediments 18(2018) 2692-2702. [23] N. Senesi, Binding mechanisms of pesticides to soil humic substances, Sci. Total Environ. 123/124(2) (1992) 63-76. [24] W.S. Pill, A.K. Nazmul, H.J. Sung, Removal of nitroimidazole antibiotics from water by adsorption over metal-organic frameworks modified with urea or melamine, Chem. Eng. J. 315(2017) 92-100. [25] K. Yang, J.T. Fox, Adsorption of humic acid by acid-modified granular activated carbon and powder activated carbon, J. Environ. Eng. 144(10) (2018), 04018104. [26] J. Guan, L. Jiang, J. Li, W. Yang, pH-dependent aggregation of histidine-functionalized Au nanoparticles induced by Fe3+ ions, J. Phys. Chem. C 112(9) (2008) 3267-3271. [27] L. Mansuy, Y. Bourezgui, E. Garnierzarli, Characterization of humic substances in highly polluted river sediments by pyrolysis methylation-gas chromatographymass spectrometry, Org. Geochem. 32(2) (2001) 223-231. [28] D. Xu, S. Zhu, H. Chen, F. Li, Structural characterization of humic acids isolated from typical soils in China and their adsorption characteristics to phenanthrene, Colloids Surf. A Physicochem. Eng. Asp. 276(1-3) (2006) 1-7. [29] I. Christl, H. Knicker, I. Kögel-Knabner, Chemical heterogeneity of humic substances:characterization of size fractions obtained by hollow-fibre ultrafiltration, Eur. J. Soil Sci. 51(4) (2008) 617-625. [30] P. Peng, Y.H. Lang, X.M. Wang, Adsorption behavior and mechanism of pentachlorophenol on reed biochars:pH effect, pyrolysis temperature, hydrochloric acid treatment and isotherms, Ecol. Eng. 90(2016) 225-233. [31] A. Baglieri, D. Vindrola, M. Gennari, M. Negre, Chemical and spectroscopic characterization of insoluble and soluble humic acid fractions at different pH values, Chem. Biol. Technol. Agric. 1(1) (2014) 0-9. [32] W. Akhtar, H.G. Edwards, Fourier-transform Raman spectroscopy of mammalian and avian keratotic biopolymers, Spectrochim. Acta A 53A (1) (1997) 81-90. [33] S.H. Huo, X.P. Yan, Metal-organic framework MIL-100(Fe) for the adsorption of malachite green from aqueous solution, J. Mater. Chem. 22(15) (2012) 7449-7455. [34] X. Zhang, R. Bai, Mechanisms and kinetics of humic acid adsorption onto chitosancoated granules, J. Colloid Interface Sci. 264(1) (2003) 30-38. [35] P. Gao, Y. Feng, Z. Zhang, J. Liu, N. Ren, Comparison of competitive and synergetic adsorption of three phenolic compounds on river sediment, Environ. Pollut. 159(10) (2011) 2876-2881. [36] S. Kizito, S. Wu, W. Kipkemoi Kirui, Evaluation of slow pyrolyzed wood and rice husks biochar for adsorption of ammonium nitrogen from piggery manure anaerobic digestate slurry, Sci. Total Environ. 505(2015) 102-112. [37] V.K. Gupta, B. Gupta, A. Rastogi, S. Agarwal, A. Nayak, A comparative investigation on adsorption performances of mesoporous activated carbon prepared from waste rubber tire and activated carbon for a hazardous azo dye-Acid Blue 113, J. Hazard. Mater. 186(1) (2011) 891-901. [38] C. Gu, K.G. Karthikeyan, Interaction of tetracycline with aluminum and iron hydrous oxides, Environ. Technol. 39(8) (2005) 2660-2667. [39] V.K. Suhas Gupta, P.J.M. Carrott, Cellulose:A review as natural, modified and activated carbon adsorbent, Bioresour. Technol. 216(2016) 1066-1076. |