[1] X.L. Wang, G.D. Wu, F. Wang, H. Liu, T.F. Jin, Enhanced catalytic performances of Ag nanoparticles supported on layered double hydroxide for styrene epoxidation, Catal, Commun. 98(2017) 107-111. [2] J. Sun, G.L. Yu, Q.S. Huo, Q.B. Kan, J.Q. Guan, Epoxidation of styrene over Fe(Cr)-MIL-101 metal-organic frameworks, RSC Adv. 4(2014) 38048-38054. [3] J.Y. Liu, Z.H. Wang, P.M. Jian, R.Q. Jian, Highly selective oxidation of styrene to benzaldehyde over a tailor-made cobalt oxide encapsulated zeolite catalyst, J. Coll. Interface. Sci. 517(2018) 144-154. [4] C. Mi, X.G. Meng, X.H. Liao, X. Peng, Selective oxidative cleavage of terminal olefins into aldehydes catalyzed by copper (II) complex, RSC Adv. 5(2015) 69487-69492. [5] A. Stamatis, P. Doutsia, C. Vartzouma, K.C. Christoforidis, Y. Deligiannakis, M. Louloudi, Epoxidation of olefins with H2O2 catalyzed by new symmetrical acetylacetone-based Schiff bases/Mn(II) homogeneous systems:A catalytic and EPR study, J. Mol. Catal. A Chem. 297(1) (2009) 44-53. [6] J. Haber, M. Kłosowski, J. Połtowicz, Co-oxidation of styrene and iso-butyraldehyde in the presence of polyaniline-supported metalloporphyrins, J. Mol. Catal. A Chem. 201(1-2) (2003) 167-178. [7] D.H. Ge, J.Q. Wang, H.B. Geng, S.L. Lu, D.T. Wang, X.M. Li, X.L. Zhao, X.Q. Cao, H.W. Gu, Facile synthesis of copper-based metal oxide nanoparticles with exceptional catalytic activity for the selective oxidation of styrenes into benzaldehydes, ChemPlusChem. 80(3) (2015) 511-515. [8] V. Pârvulescu1, C. Anastasescu1, B.L. Su, Vanadium incorporated mesoporous silicates as catalysts for oxidation of alcohols and aromatics, J. Mol. Catal. A Chem. 198(1-2) (2003) 249-261. [9] S. Gómez, L.J. Garces, J. Villegas, R. Ghosh, O. Giraldo, S.L. Suib, Synthesis and characterization of TM-MCM-48(TM=Mn, V, Cr) and their catalytic activity in the oxidation of styrene, J. Catal. 233(1) (2005) 60-67. [10] B. Singh, A.K. Sinha, Synthesis of hierarchical mesoporous vanadium silicate-1 zeolite catalysts for styrene epoxidation with organic hydroperoxide, J. Mater. Chem. A 2(2014) 1930-1939. [11] J.Q. Xu, Q. Zhang, F. Guo, J.P. Hong, C. Wei, Effects of the crystallization time on the mesoporous structure, texture, morphology and styrene oxidation performances of V-MCM-41, J. Energy Chem. 25(6) (2016) 1058-1063. [12] H.Q. Wang, W. Qian, J. Chen, Y. Wu, X.Y. Xu, J. Wang, Y. Kong, Spherical V-MCM-48:the synthesis, characterization and catalytic performance in styrene oxidation, RSC Adv. 4(2014) 50832-50839. [13] M.R. Maurya, M. Kumar, S. Sikarwar, Polymer-anchored oxoperoxo complexes of vanadium(v), molybdenum(vi) and tungsten(vi) as catalyst for the oxidation of phenol and styrene using hydrogen peroxide as oxidant, React. Funct. Polym. 66(8) (2006) 808-818. [14] Z.F. Li, L.L. Liu, J. Hu, H. Liu, S.J. Wu, Q.S. Huo, J.Q. Guan, Q.B. Kan, Epoxidation of styrene with molecular oxygen catalyzed by a novel oxovanadium(IV) catalyst containing two different kinds of ligands, Appl. Organometal. Chem. 26(2012) 252-257. [15] A.D. Giuseppe, C.D. Nicola, R. Pettinari, I. Ferino, D. Meloni, M. Passacantando, M. Crucianelli, Selective catalytic oxidation of olefins by novel oxovanadium(IV) complexes having different donor ligands covalently anchored on SBA-15:A comparative study, Catal. Sci. Technol. 3(2013) 1972-1984. [16] J.Y. Xie, W.X. Zhuang, N. Yan, Y.H. Du, S.B. Xi, W. Zhang, J.J. Tang, Y. Zhou, J. Wang, Directly synthesized V-containing BEA zeolite:Acid-oxidation bifunctional catalyst enhancing c-alkylation selectivity in liquid-phase methylation of phenol, Chem. Eng. J. 328(2017) 1031-1042. [17] R.M. Leithall, V.N. Shetti, S. Maurelli, M. Chiesa, E. Gianotti, R. Raja, Toward understanding the catalytic synergy in the design of bimetallic molecular sieves for selective aerobic oxidations, J. Am. Chem. Soc. 135(8) (2013) 2915-2918. [18] F. Yang, J.J. Tang, R. Ou, Z.J. Guo, S.Y. Gao, Y.Z. Wang, X.Y. Wang, L. Chen, A.H. Yuan, Fully catalytic upgrading synthesis of 5-ethoxymethylfurfural from biomass-derived 5-hydroxymethylfurfural over recyclable layered-niobium-molybdate solid acid, Appl. Catal. B Environ. 256(2019) 117786. [19] D. Verboekend, N. Nuttens, R. Locus, J. Van Aelst, P. Verolme, J.C. Groen, J. PérezRamírez, B.F. Sels, Synthesis, characterisation, and catalytic evaluation of hierarchical faujasite zeolites:milestones, challenges, and future directions, Chem. Soc. Rev. 45(2016) 3331-3352. [20] B. Guo, L.F. Zhu, X.K. Hu, Q. Zhang, D.M. Tong, G.Y. Lia, C.W. Hu, Nature of vanadium species on vanadium silicalite-1 zeolite and their stability in hydroxylation reaction of benzene to phenol, Catal. Sci. Technol. 1(2011) 1060-1067. [21] X.F. Liu, S.L. Zhong, F. Yang, H. Su, W. Lin, J.C. Chen, L.M. Peng, S.J. Zhou, Y. Kong, Template-free synthesis of high-content vanadium-doped ZSM-5 with enhanced catalytic performance, Chemistry Select. 2(35) (2017) 11513-11520. [22] A. Bhan, Y.V. Joshi, W.N. Delgass, K.T. Thomson, DFT investigation of alkoxide formation from olefins in H-ZSM-5, J. Phys. Chem. B 107(2003) 10476-10487. [23] Y. Jung, Y.J. Shin, Y.D. Pyo, C.P. Cho, J. Jang, G. Kim, NOx and N2O emissions over a urea-SCR system containing both V2O5-WO3/TiO2 and Cu-zeolite catalysts in a diesel engine, Chem. Eng. J. 326(2017) 853-862. [24] A. Bellmann, H. Atia, U. Bentrup, A. Brückner, Mechanism of the selective reduction of NOx by methane over Co-ZSM-5, Appl. Catal. B Environ. 230(2018) 184-193. [25] B.H. Chen, Z.S. Chao, H. He, C. Huang, Y.J. Liu, W.J. Yi, X.L. Wei, J.F. An, Towards a full understanding of the nature of Ni(II) species and hydroxyl groups over highly siliceous HZSM-5 zeolite supported nickel catalysts prepared by a deposition-precipitation method, Dalton Trans. 45(2016) 2720-2739. [26] R. Baran, Y. Millot, T. Onfroy, F. Averseng, J.M. Krafft, S. Dzwigaj, Influence of the preparation procedure on the nature and environment of vanadium in VSiBEA zeolite:XRD, DR UV-vis, NMR, EPR and TPR studies, Micro. Meso. Mater. 161(2012) 179-186. [27] S. Dzwigaj, E. Ivanova, R. Kefirov, K. Hadjiivanov, F. Averseng, J.M. Krafft, M. Che, Remarkable effect of the preparation method on the state of vanadium in BEA zeolite:Lattice and extra-lattice V species, Catal. Today 142(2009) 185-191. [28] R. Baran, T. Onfroy, T. Grzybek, S. Dzwigaj, Influence of the nature and environment of vanadium in VSiBEA zeolite on selective catalytic reduction of NO with ammonia, Appl. Catal. B Environ. 136-137(2013) 186-192. [29] H.L. Janardhan, G.V. Shanbhag, A.B. Halgeri, Shape-selective catalysis by phosphate modified zsm-5:Generation of new acid sites with pore narrowing, Appl. Catal. A Gen. 471(2014) 12-18. [30] A.A. Ismail, R.M. Mohamed, I.A. Ibrahim, G. Kini, B. Koopman, Synthesis, optimization and characterization of zeolite A and its ion-exchange properties, Colloids, Surf. A. Physicochemical. Eng. Asp. 366(2010) 80-87. [31] X.H. Yang, F. Wang, R.P. Wei, S. Li, Y.F. Wu, P.X. Shen, H.Z. Wang, L.J. Gao, G.M. Xiao, Synergy effect between hierarchical structured and Sn-modified H[Sn, Al]ZSM-5 zeolites on the catalysts for glycerol aromatization, Micro. Meso. Mater. 257(2018) 154-161. [32] M. Nemanashi, R. Meijboom, Dendrimer derived titania-supported Au nanoparticles as potential catalysts in styrene oxidation, Catal. Lett. 143(4) (2013) 324-332. [33] C. Liu, J. Huang, D. Sun, Y. Zhou, X. Jing, M. Du, H. Wang, Q. Li, Anatase type extraframework titanium in TS-1:A vital factor influencing the catalytic activity toward styrene epoxidation, Appl. Catal. A Gen. 459(2013) 1-7. [34] A.J. Medford, A. Vojvodic, J.S. Hummelshøj, J. Voss, F. Abild-Pedersen, F. Studt, T. Bligaard, A. Nilsson, J.K. Nørskov, From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis, J. Catal. 328(2015) 36-42. [35] S. Schallmoser, G.L. Haller, M. Sanchez-Sanchez, J.A. Lercher, Role of spatial constraints of Brønsted acid sites for adsorption and surface reactions of linear pentenes, J. Am. Chem. Soc. 139(25) (2017) 8646-8652. [36] H. Ishikawa, E.Yoda, J.N. Kondo, F. Wakabayashi, K. Domen, Stable dimerized alkoxy species of 2-methylpropene on mordenite zeolite studied by FT-IR. J. Phys. Chem. B 103(27) (1999), 5681-5686. [37] C. M. Nguyen, B. A. D. Moor, M.F. Reyniers, G, B. Marin, Physisorption and chemisorption of linear alkenes in zeolites:A combined QM-Pot (MP2//B3LYP:GULP)-statistical thermodynamics study, J. Phys. Chem. C. 115(48) (2011) 23831-23847. [38] M.H. Wang, D.J. Xu, Y.Q. Zhou, S.J. Zhang, General chemistry, Higher Education Press, Fifth ED, p167-p169, Beijing, 2011. [39] S. Quinebèche, C. Navarro, Y. Gnanou, M. Fontanille, In situ mid-IR and UV-visible spectroscopies applied to the determination of kinetic parameters in the anionic copolymerization of styrene and isoprene, Polym. 50(2009) 1351-1357. [40] H. Shima, T. Tatsumi, J.N. Kondo, Direct FT-IR observation of oxidation of 1-hexene and cyclohexene with H2O2 over TS-1, Micro, Meso. Mater. 135(2010) 13-20. [41] F. Rajabi, N. Karimi, M.R. Saidi, A. Primo, R.S. Varma, R. Luque, Unprecedented selective oxidation of styrene derivatives using a supported iron oxide nanocatalyst in aqueous medium, Adv. Synth. Catal. 354(9) (2012) 1707-1711. [42] F. Yang, B. Shao, X.F. Liu, S.Y. Gao, X. Hu, M. Xu, Y. Wang, S.J. Zhou, Y. Kong, Nanosheet-like Ni-based metasilicate towards the regulated catalytic activity in styrene oxidation via introducing heteroatom metal, Appl. Surf. Sci. 471(2019) 822-834. [43] F. Yang, Y. Ding, S.J. Zhou, B.B. Wang, Y. Kong, Oriented surface decoration of (CoMn) bimetal oxides on nanospherical porous silica and synergetic effect in biomass-derived 5-hydroxymethylfurfural oxidation, Mol. Catal. 435(2017) 144-155. |