[1] C.O. Tuck, E. Pérez, I.T. Horváth, R.A. Sheldon, M. Poliak, Valorization of biomass:Deriving more value from waste, Science 337(2012) 695-699. [2] H. Wang, H. Han, E. Sun, Y. Zhang, J. Li, Y. Chen, H. Song, H. Zhao, Production of aryl oxygen-containing compounds from catalytic pyrolysis of bagasse lignin over LaTixFe1-xO3, Chin. J. Chem. Eng. 27(8) (2019) 1939-1944. [3] Z. Zhang, J. Song, B. Han, Catalytic transformation of lignocellulose into chemicals and fuel products in ionic liquids, Chem. Rev. 117(10) (2017) 6834-6880. [4] Z. Sun, B. Fridrich, A.D. Santi, S. Elangovan, K. Barta, Bright side of lignin depolymerization:Toward new platform chemicals, Chem. Rev. 118(2) (2018) 614-678. [5] W. Jiang, H. Li, C. Wang, W. Liu, T. Guo, H. Liu, W. Zhu, H. Li, Synthesis of ionic liquidbased deep eutectic solvents for extractive desulfurization of fuel, Energy Fuel 30(2016) 2204-2208. [6] M.P. Pandey, C.S. Kim, Lignin Depolymerization and conversion:A review of thermochemical methods, Chemical Engineering & Technology 34(1) (2011) 29-41. [7] R. Behling, S. Valange, G. Chatel, Heterogeneous catalytic oxidation for lignin valorization into valuable chemicals:What results? What limitations? What trends? Green Chem. 18(7) (2016) 1839-1854. [8] O.V. Morozova, G.P. Shumakovich, M.A. Gorbacheva, S.V. Shleev, A.I.J.B. Yaropolov, Blue, Laccases, Biochemistry 72(10) (2007) 1136-1150. [9] M.N. Kumar, R. Ravikumar, S. Thenmozhi, M.K. Sankar, Development of natural cellulase inhibitor mediated intensified biological pretreatment technology using Pleurotus Florida for maximum recovery of cellulose from paddy straw under solid state condition, Bioresour. Technol. 244(2017) 353-361. [10] M.R. Trejo-Hernandez, A. Lopez-Munguia, R.Q. Ramirez, Residual compost of Agaricus bisporus as a source of crude laccase for enzymic oxidation of phenolic compounds, Process Biochem. 36(7) (2001) 635-639. [11] C. Jiang, S. Ling, P. Wang, A. Liang, B. Chen, G. Wen, A new and sensitive catalytic resonance scattering spectral assay for the detection of laccase using guaiacol as substrate, Luminescence 26(6)(2010) 500-505. [12] E.M. Abd, A. Rehan, E.A. Hassan, E.M. Ramadan, Production of laccase enzyme for their potential application to decolorize fungal pigments on aging paper and parchment, Annals of Agricultural Sciences 61(1)(2016) 145-154. [13] B. Dayi, A.D. Kyzy, H.A. Akdogan, Characterization of recuperating talent of white-rot fungi cells to dye-contaminated soil/water, Chin. J. Chem. Eng. 27(03) (2019) 161-165. [14] V. Perna, A.S. Meyer, J. Holck, L.D. Eltis, V.G.H. Eijsink, J.W. Agger, Laccase-Catalyzed Oxidation of Lignin Induces Production of H2O2, ACS Sustainable Chem. Eng. 8(2020) 831-841. [15] J. Wang, J. Feng, W. Jia, S. Chang, S. Li, Y. Li, Lignin engineering through laccase modification:A promising field for energy plant improvement, Biotechnology for Biofuels 8(1) (2015) 145. [16] S.M. Henrikki, F. Muhammad, K. Jari, P. Alessandro, S. Jani, s. Monika, Spatially confined lignin nanospheres for biocatalytic ester synthesis in aqueous media, Nature Communications 9(1)(2018) 2300. [17] R.C. Rodrigues, C. Ortiz, A. Berenguer-Murcia, R. Ferna'ndez-Lafuente, Modifying enzyme activity and selectivity by immobilization, Chem. Soc. Rev. 42(2013) 6290-6307. [18] R.M. Daniel, The upper limits of enzyme thermal stability, Enzyme Microbial Technology 19(1) (1996) 74-79. [19] V.a. Martina, V. Stanislava, J.J. Ana, S. Vladislav, A. Vojtěch, Preparation and optimisation of cross-linked enzyme aggregates using native isolate white rot fungi trametes versicolor and fomes fomentarius for the decolourisation of synthetic dyes, International Journal of Environmental Research Public Health 15(2017) 23. [20] X. Wenlei, H. Mengyun, Immobilization of Candida rugosa lipase onto graphene oxide Fe3O4 nanocomposite:Characterization and application for biodiesel production, Energy Convers. Manag. 159(2018) 42-53. [21] R. Shaheen, M. Asgher, F. Hussain, H.N. Bhatti, Immobilized lignin peroxidase from Ganoderma lucidum IBL-05 with improved dye decolorization and cytotoxicity reduction properties, Int. J. Biol. Macromol. 103(2017) 57-64. [22] S.F. Oliveira, J.M.R. da Luz, M.C.M. Kasuya, L.O. Ladeira, A.C. Junior, Enzymatic extract containing lignin peroxidase immobilized on carbon nanotubes:Potential biocatalyst in dye decolourization, Saudi Journal of Biological Sciences 25(4) (2018) 651-659. [23] A.K. Reza Amin, Abdollah Fallah Shojaei, Shahla Rezaei, Mohammad Ali Faramarzi, Immobilization of laccase on modified Fe3O4@SiO2@Kit-6 magnetite nanoparticles for enhanced delignification of olive pomace bio-waste, Int. J. Biol. Macromol. 114(2018) 106-113. [24] J. Guo, X. Liu, X. Zhang, J. Wu, C. Chai, D. Ma, Q. Chen, D. Xiang, W. Ge, Immobilized lignin peroxidase on Fe3O4@SiO2@polydopamine nanoparticles for degradation of organic pollutants, Int. J. Biol. Macromol. 138(2019) 433-440. [25] J. Liu, Z. Sun, Y. Deng, Y. Zou, C. Li, X. Guo, L. Xiong, Y. Gao, F. Li, D. Zhao, Highly water-dispersible biocompatible magnetite particles with low cytotoxicity stabilized by citrate groups, Angew. Chem. Int. Ed. 48(32) (2010) 5875-5879. [26] R. Wang, Y. Hu, N. Zhao, F.J.A.A.M. Xu, Interfaces, well defined peapod-like magnetic nanoparticles and their controlled modification for effective imaging guided gene therapy, ACS Appl. Mater. Interfaces 8(2016) 11298-11308. [27] K.S. Muthuvelu, R. Rajarathinam, R.N. Selvaraj, V.B. Rajendren, A novel method for improving laccase activity by immobilization onto copper ferrite nanoparticles for lignin degradation, Int. J. Biol. Macromol. 152(2020) 1098-1107. [28] S.K.S. Patel, V.C. Kalia, J.H. Choi, J.R. Haw, J.K. Lee, Immobilization of laccase on SiO2 nanocarriers improves its stability and reusability, Microbiol Biotechnol 24(5) (2014) 639-647. [29] Y. Liu, Z. Zeng, G. Zeng, L. Tang, Y. Pang, Z. Li, C. Liu, X. Lei, M. Wu, P. Ren, Immobilization of laccase on magnetic bimodal mesoporous carbon and the application in the removal of phenolic compounds, Bioresour. Technol. 115(2012) 21-26. [30] H. Song, M. Yu, Y. Lu, Z. Gu, Y. Yang, M. Zhang, J. Fu, C. Y., Plasmid DNA delivery:Nanotopography matters, J. Am. Chem. Soc. 139(2017) 18247-18254. [31] S.S. Nadar, V.K. Rathod, A co-immobilization of pectinase and cellulase onto magnetic nanoparticles for antioxidant extraction from waste fruit peels, Biocatalysis agricultural biotechnology 17(2019) 470-479. [32] A.A. Homaei, R. Sariri, F. Vianello, R. Stevanato, Enzyme immobilization:An update, Journal of Chemical Biology 6(4) (2013) 185-205. [33] N.R. Mohamad, N.H.C. Marzuki, N.A. Buang, F. Huyop, R.A. Wahab, An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes, Biotechnology, Biotechnological Equipment 29(2) (2015) 205-220. [34] Maija-Liisa Mattinen, Pekka Maijala, Paula Nousiainen, Annika Smeds, Jussi Kontro, Jussi Sipilä, Tarja Tamminen, Stefan Willför, L. Viikari, Oxidation of lignans and lignin model compounds by laccase in aqueous solvent systems, J. Mol. Catal. B Enzym. 72(2011) 122-129. [35] O. Rich Joseph, Amber M. Anderson, Mark A. Berhow, Laccase-mediator catalyzed conversion of model lignin compounds, Biocatalysis and Agricultural Biotechnology 5(2016) 111-115. [36] S. Majumdar, T. Lukk, J.O. Solbiati, S. Bauer, S.K. Nair, J.E. Cronan, J.A. Gerlt, Roles of small laccases from streptomyces in lignin degradation, Biochemistry 53(24) (2014) 4047-4058. [37] D. Cronin, L. Moghaddam, D. Rackemann, J. Bartley, W.O.S. Doherty, Degradation of phenethoxybenzene in sodium hydroxide, Rsc Advances 6(63) (2016) 57889-57901. [38] Carl E. Cerniglia, Biodegradation of polycyclic aromatic hydrocarbons, Biodegradation 3(1992) 351-368. |