[1] W. Tian, Y. Ren, Y. Dong, S. Wang, L. Bu, Fault monitoring based on mutual information feature engineering modeling in chemical process, Chin. J. Chem. Eng. 27(2019) 2491-2497. [2] R. Fezai, M. Mansouri, K. Abodayeh, H. Nounou, M. Nounou, Online reduced gaussian process regression based generalized likelihood ratio test for fault detection, J. Process Control 85(2020) 30-40. [3] S.A. Taqvi, L.D. Tufa, H. Zabiri, A.S. Maulud, F. Uddin, Fault detection in distillation column using NARX neural network, Neural Comput. Appl. 32(2020) 3503-3519. [4] S. Joe Qin, Statistical process monitoring:basics and beyond, J. Chemom. 17(2003) 480-502. [5] X.Z. Wang, S. Medasani, F. Marhoon, H. Albazzaz, Multidimensional visualization of principal component scores for process historical data analysis, Ind. Eng. Chem. Res. 43(2004) 7036-7048. [6] C. Zhao, H. Sun, Dynamic distributed monitoring strategy for large-scale nonstationary processes subject to frequently varying conditions under closed-loop control, IEEE Trans. Ind. Electron. 66(2019) 4749-4758. [7] A.M. Benkouider, J.C. Buvat, J.M. Cosmao, A. Saboni, Fault detection in semibatch reactor using the EKF and statistical method, J. Loss Prev. Process Ind. 22(2009) 153-161. [8] S.A. Taqvi, L.D. Tufa, H. Zabiri, A.S. Maulud, F. Uddin, Multiple fault diagnosis in distillation column using multikernel support vector machine, Ind. Eng. Chem. Res. 57(2018) 14689-14706. [9] S.A. Taqvi, L.D. Tufa, H. Zabiri, S. Mahadzir, A.S. Maulud, F. Uddin, Artificial neural network for anomalies detection in distillation column, Asian Simulat. Conf. (2017) 302-311. [10] V. Venkatasubramanian, R. Rengaswamy, S.N. Kavuri, A review of process fault detection and diagnosis:Part Ⅱ:Qualitative models and search strategies, Comput. Chem. Eng. 27(2003) 313-326. [11] V. Venkatasubramanian, R. Rengaswamy, S.N. Kavuri, K. Yin, A review of process fault detection and diagnosis:Part Ⅲ:Process history based methods, Comput. Chem. Eng. 27(2003) 327-346. [12] V. Venkatasubramanian, R. Rengaswamy, K. Yin, S.N. Kavuri, A review of process fault detection and diagnosis:Part I:Quantitative model-based methods, Comput. Chem. Eng. 27(2003) 293-311. [13] S.J. Qin, Survey on data-driven industrial process monitoring and diagnosis, Annu. Rev. Control 36(2012) 220-234. [14] D.C. Montgomery, Introduction to Statistical Quality Control, John Wiley, Hoboken, N.J., 2005. [15] M. Staroswiecki, Redondance analytique, Automatique et statistiques pour le diagnostic (2001) 43-68. [16] J. Gertler, Fault Detection and Diagnosis in Engineering Systems, CRC Press, 1998. [17] F. Harrou, Y. Sun, S. Khadraoui, Amalgamation of anomaly-detection indices for enhanced process monitoring, J. Loss Prev. Process Ind. 40(2016) 365-377. [18] Q. Jiang, B. Huang, Distributed monitoring for large-scale processes based on multivariate statistical analysis and Bayesian method, J. Process Control 46(2016) 75-83. [19] M. Kano, K. Nagao, S. Hasebe, I. Hashimoto, H. Ohno, R. Strauss, et al., Comparison of multivariate statistical process monitoring methods with applications to the Eastman challenge problem, Comput. Chem. Eng. 26(2002) 161-174. [20] E. Naderi, K. Khorasani, A data-driven approach to actuator and sensor fault detection, isolation and estimation in discrete-time linear systems, Automatica 85(2017) 165-178. [21] T. Ait-Izem, M.F. Harkat, M. Djeghaba, F. Kratz, On the application of interval PCA to process monitoring:A robust strategy for sensor FDI with new efficient control statistics, J. Process Control 63(2018) 29-46. [22] N. Basha, M. Nounou, H. Nounou, Multivariate fault detection and classification using interval principal component analysis, J. Comput. Sci. 27(2018) 1-9. [23] X. Gao, J. Hou, An improved SVM integrated GS-PCA fault diagnosis approach of Tennessee Eastman process, Neurocomputing 174(2016) 906-911. [24] T. Rato, M. Reis, E. Schmitt, M. Hubert, B. De Ketelaere, A systematic comparison of PCA-based statistical process monitoring methods for highdimensional, time-dependent processes, AIChE J. 62(2016) 1478-1493. [25] B. Mnassri, E.M. El Adel, M. Ouladsine, Generalization and analysis of sufficient conditions for PCA-based fault detectability and isolability, Annu. Rev. Control 37(2013) 154-162. [26] U. Kruger, G. Dimitriadis, Diagnosis of process faults in chemical systems using a local partial least squares approach, AIChE J. 54(2008) 2581-2596. [27] G. Li, S.J. Qin, D. Zhou, Geometric properties of partial least squares for process monitoring, Automatica 46(2010) 204-210. [28] R. Fezai, M. Mansouri, O. Taouali, M.F. Harkat, N. Bouguila, Online reduced kernel principal component analysis for process monitoring, J. Process Control 61(2018) 1-11. [29] L. Wang, H. Shi, Improved kernel PLS-based fault detection approach for nonlinear chemical processes, Chin. J. Chem. Eng. 22(2014) 657-663. [30] F. Jia, E.B. Martin, A.J. Morris, Non-linear principal components analysis for process fault detection, Comput. Chem. Eng. 22(1998) S851-S854. [31] J.-M. Lee, C. Yoo, S.W. Choi, P.A. Vanrolleghem, I.-B. Lee, Nonlinear process monitoring using kernel principal component analysis, Chem. Eng. Sci. 59(2004) 223-234. [32] Y. Zhang, C. Ma, Fault diagnosis of nonlinear processes using multiscale KPCA and multiscale KPLS, Chem. Eng. Sci. 66(2011) 64-72. [33] M. Jia, F. Chu, F. Wang, W. Wang, On-line batch process monitoring using batch dynamic kernel principal component analysis, Chemomet. Intell. Lab. Syst. 101(2010) 110-122. [34] W. Li, H.H. Yue, S. Valle-Cervantes, S.J. Qin, Recursive PCA for adaptive process monitoring, J. Process Control 10(2000) 471-486. [35] J. Chen, K.-C. Liu, On-line batch process monitoring using dynamic PCA and dynamic PLS models, Chem. Eng. Sci. 57(2002) 63-75. [36] Y. Zhang, S. Li, Z. Hu, Improved multi-scale kernel principal component analysis and its application for fault detection, Chem. Eng. Res. Des. 90(2012) 1271-1280. [37] M. Misra, H.H. Yue, S.J. Qin, C. Ling, Multivariate process monitoring and fault diagnosis by multi-scale PCA, Comput. Chem. Eng. 26(2002) 1281-1293. [38] B.R. Bakshi, Multiscale PCA with application to multivariate statistical process monitoring, AIChE J. 44(1998) 1596-1610. [39] C. Botre, M. Mansouri, M.N. Karim, H. Nounou, M. Nounou, Multiscale PLSbased GLRT for fault detection of chemical processes, J. Loss Prev. Process Ind. 46(2017) 143-153. [40] M.Z. Sheriff, M. Mansouri, M.N. Karim, H. Nounou, M. Nounou, Fault detection using multiscale PCA-based moving window GLRT, J. Process Control 54(2017) 47-64. [41] H.B. Aradhye, B.R. Bakshi, R.A. Strauss, J.F. Davis, Multiscale SPC using wavelets:Theoretical analysis and properties, AIChE J. 49(2003) 939-958. [42] M.S. Reis, P.M. Saraiva, Multiscale statistical process control with multiresolution data, AIChE J. 52(2006) 2107-2119. [43] A. Azzalini, M. Farge, K. Schneider, Nonlinear wavelet thresholding:A recursive method to determine the optimal denoising threshold, Appl. Comput. Harmon. Anal. 18(2005) 177-185. [44] M. Mansouri, M.N. Nounou, H.N. Nounou, Multiscale kernel PLS-based exponentially weighted-GLRT and its application to fault detection, IEEE Trans. Emerg. Top. Comput. Intell. 3(2019) 49-58. [45] A. Maulud, D. Wang, J.A. Romagnoli, A multi-scale orthogonal nonlinear strategy for multi-variate statistical process monitoring, J. Process Control 16(2006) 671-683. [46] B. Khaldi, F. Harrou, F. Cherif, Y. Sun, Monitoring a robot swarm using a datadriven fault detection approach, Rob. Auton. Syst. 97(2017) 193-203. [47] M.A. Bin Shams, H.M. Budman, T.A. Duever, Fault detection, identification and diagnosis using CUSUM based PCA, Chem. Eng. Sci. 66(2011) 4488-4498. [48] C. Botre, M. Mansouri, M. Nounou, H. Nounou, M.N. Karim, Kernel PLS-based GLRT method for fault detection of chemical processes, J. Loss Prev. Process Ind. 43(2016) 212-224. [49] J. Zhu, Z. Ge, Z. Song, Distributed parallel PCA for modeling and monitoring of large-scale plant-wide processes with big data, IEEE Trans. Ind. Inf. 13(2017) 1877-1885. [50] J. Josse, F. Husson, Selecting the number of components in principal component analysis using cross-validation approximations, Comput. Stat. Data Anal. 56(2012) 1869-1879. [51] E. Saccenti, J. Camacho, Determining the number of components in principal components analysis:A comparison of statistical, crossvalidation and approximated methods, Chemomet. Intell. Lab. Syst. 149(2015) 99-116. [52] M. Zhu, A. Ghodsi, Automatic dimensionality selection from the scree plot via the use of profile likelihood, Comput. Stat. Data Anal. 51(2006) 918-930. [53] S.G. Mallat, A theory for multiresolution signal decomposition:the wavelet representation, IEEE Trans. Pattern Anal. Mach. Intell. 11(1989) 674-693. [54] H.N. Nounou, M.N. Nounou, Multiscale fuzzy Kalman filtering, Eng. Appl. Artif. Intell. 19(2006) 439-450. [55] S. Yoon, J.F. MacGregor, Principal-component analysis of multiscale data for process monitoring and fault diagnosis, AIChE J. 50(2004) 2891-2903. [56] V.D.C.C. de Vargas, L.F. Dias Lopes, A. Mendonça Souza, Comparative study of the performance of the CuSum and EWMA control charts, Comput. Ind. Eng. 46(2004) 707-724. [57] S.W. Choi, J. Morris, I.-B. Lee, Nonlinear multiscale modelling for fault detection and identification, Chem. Eng. Sci. 63(2008) 2252-2266. [58] X. Deng, X. Tian, Sparse kernel locality preserving projection and its application in nonlinear process fault detection, Chin. J. Chem. Eng. 21(2013) 163-170. |