[1] F. Abbas, C. Philip, Prospects for subsurface CO2 sequestration, AIChE J. 56 (2010) 1398-1405. [2] A.S. Bhown, B.C. Freeman, Analysis and status of post-combustion carbon dioxide capture technologies, Environ. Sci. Technol. 45 (2011) 8624-8632. [3] Y.X. Lv, X.H. Yu, J.J. Jia, S.T. Tu, J.Y. Yan, E. Dahlquist, Fabrication and characterization of superhydrophobic polypropylene hollow fiber membranes for carbon dioxide absorption, Appl. Energy 90 (2012) 167-174. [4] N. Prasetya, N.F. Himma, P.D. Sutrisna, I.G. Wenten, B.P. Ladewig, A review on emerging organic-containing microporous material membranes for carbon capture and separation, Chem. Eng. J. (2020) 123575. [5] J.G. Lu, C.T. Lu, Y. Chen, L. Gao, X. Zhao, H. Zhang, Z.W. Xu, CO2 capture by membrane absorption coupling process: application of ionic liquids, Appl. Energy 115 (2014) 573-581. [6] T. Damartzis, A.I. Papadopoulos, P. Seferlis, Process flowsheet design optimization for various amine-based solvents in post-combustion CO2 capture plants, J. Cleaner Prod. 111 (2016) 204-216. [7] B.H. Lv, G.H. Jing, Y.H. Qian, Z.M. Zhou, An efficient absorbent of amine-based amino acid-functionalized ionic liquids for CO2 capture: High capacity and regeneration ability, Chem. Eng. J. 289 (2016) 212-218. [8] F. Barzagli, F. Mani, M. Peruzzini, Continuous cycles of CO2 absorption and amine regeneration with aqueous alkanolamines: A comparison of the efficiency between pure and blended DEA, MDEA and AMP solutions by 13C NMR spectroscopy, Energy Environ. Sci. 3 (2010) 772-779. [9] J.T. Wang, M. Wang, W.C. Li, W.M. Qiao, D.H. Long, L.C. Ling, Application of polyethylenimine-impregnated solid adsorbents for direct capture of low-concentration CO2, AIChE J. 61 (2015) 972-980. [10] N. Konduru, P. Lindner, N.M. Assaf-Anid, Curbing the greenhouse effect by carbon dioxide adsorption with Zeolite 13X, AIChE J. 53 (2007) 3137-3143. [11] A. Samanta, A. Zhao, G.K.H. Shimizu, P. Sarkar, R. Gupta, Post-combustion CO2 capture using solid sorbents: A review, Ind. Eng. Chem. Res. 51 (2012) 1438-1463. [12] F. Foeth, H. Bosch, T. Reith, M. Andersson, G. Aly, Separation of dilute CO2-CH4 mixtures by adsorption on activated carbon, Sep. Sci. Technol. 29 (1994) 93-118. [13] Y.M. Liu, X.J. Yu, Carbon dioxide adsorption properties and adsorption/ desorption kinetics of amine-functionalized KIT-6, Appl. Energy 211 (2018) 1080-1088. [14] H. Furukawa, K.E. Cordova, M. O’Keeffe, O.M. Yaghi, The chemistry and applications of metal-organic frameworks, Science 341 (2013) 974. [15] E. Adatoz, A.K. Avci, S. Keskin, Opportunities and challenges of MOF-based membranes in gas separations, Sep. Purif. Technol. 152 (2015) 207-237. [16] S. Han, Y. Huang, T. Watanabe, S. Nair, K.S. Walton, D.S. Sholl, J. Carson Meredith, MOF stability and gas adsorption as a function of exposure to water, humid air, SO2, and NO2, Microporous Mesoporous Mater. 173 (2013) 86-91. [17] J. Liu, J. Tian, P.K. Thallapally, B.P. McGrail, Selective CO2 capture from flue gas using metal-organic frameworks-a fixed bed study, J. Phys. Chem. C 116 (2012) 9575-9581. [18] A.C. Kizzie, A.G. Wong-Foy, A.J. Matzger, Effect of humidity on the performance of microporous coordination polymers as adsorbents for CO2 capture, Langmuir: ACS J. Surf. Colloids 27 (2011) 6368-6373. [19] K.S. Park, Z. Ni, A.P. Côté, J.Y. Choi, R. Huang, F.J. Uribe-Romo, H.K. Chae, M. O’Keeffe, O.M. Yaghi, Exceptional chemical and thermal stability of zeolitic imidazolate frameworks, Proc. Natl. Acad. Sci. USA 103 (2006) 10186-10191. [20] S. Gadipelli, W. Travis, W. Zhou, Z.X. Guo, A thermally derived and optimized structure from ZIF-8 with giant enhancement in CO2 uptake, Energy Environ. Sci. 7 (2014) 2232-2238. [21] G.J. Chen, B. Liu, H. Li, M.K. Yang, C.Y. Sun, W. Chen, A preparation method for zeolitic imidazolate frameworks, CN Pat., ZL201910183203.1 (2020). [22] H. Liu, B. Liu, L.C. Lin, G.J. Chen, Y.Q. Wu, J. Wang, X.T. Gao, Y.N. Lv, Y. Pan, X.X. Zhang, X.R. Zhang, L.Y. Yang, C.Y. Sun, B. Smit, W.C. Wang, A hybrid absorption-adsorption method to efficiently capture carbon, Nat. Commun. 5 (2014) 5147-5154. [23] H. Liu, Y. Pan, B. Liu, C.Y. Sun, P. Guo, X.T. Gao, L.Y. Yang, Q.L. Ma, G.J. Chen, Tunable integration of absorption-membrane-adsorption for efficiently separating low boiling gas mixtures near normal temperature, Sci. Rep. 6 (2016) 21114-21124. [24] Z.G. Lei, C.N. Dai, W.J. Song, Adsorptive absorption: A preliminary experimental and modeling study on CO2 solubility, Chem. Eng. Sci. 127 (2015) 260-268. [25] H. Liu, P. Guo, T. Regueira, Z.H. Wang, J.F. Du, G.J. Chen, Irreversible change of the pore structure of ZIF-8 in carbon dioxide capture with water coexistence, J. Phys. Chem. C 120 (2016) 13287-13294. [26] C.Z. Jia, H. Li, B. Liu, Z.C. Qiao, Z.Y. Zhang, C.Y. Sun, L.Y. Yang, G.J. Chen, Sorption performance and reproducibility of ZIF-8 slurry for CO2/CH4 separation with the presence of water in solvent, Ind. Eng. Chem. Res. 57 (2018) 12494-12501. [27] H. Li, W. Chen, B. Liu, C.Z. Jia, Z.C. Qiao, C.Y. Sun, L.Y. Yang, Q.L. Ma, G.J. Chen, CO2 capture using ZIF-8/water-glycol-2-methylimidazole slurry with high capacity and low desorption heat, Chem. Eng. Sci. 182 (2018) 189-199. [28] S.R. Yan, D. Zhu, Z.Y. Zhang, H. Li, G.J. Chen, B. Liu, A pilot-scale experimental study on CO2 capture using Zeolitic imidazolate framework-8 slurry under normal pressure, Appl. Energy 248 (2019) 104-114. [29] Y. Pan, H. Li, X.X. Zhang, Z. Zhang, X.S. Tong, C.Z. Jia, B. Liu, C.Y. Sun, L.Y. Yang, G.J. Chen, Large-scale synthesis of ZIF-67 and highly efficient carbon capture using a ZIF-67/glycol-2-methylimidazole slurry, Chem. Eng. Sci. 137 (2015) 504-514. [30] M.C. Ruzicka, J. Drahoš, M. Fialová, N.H. Thomas, Effect of bubble column dimensions on flow regime transition, Chem. Eng. Sci. 56 (2001) 6117-6124. [31] P.M. Wilkinson, A.P. Spek, L.L.V. Dierendonck, Design parameters estimation for scale-up of high-pressure bubble columns, AIChE J. 38 (1992) 544-554. [32] G. Besagni, L. Gallazzini, F. Inzoli, On the scale-up criteria for bubble columns, Petroleum 5 (2019) 114-122. [33] A.A. Youssef, M.H. Al-Dahhan, Impact of internals on the gas holdup and bubble properties of a bubble column, Ind. Eng. Chem. Res 48 (17) (2009) 8007-8013. [34] J.W. Chen, F. Li, S. Degaleesan, P. Gupta, M.H. Al-Dahhan, M.P. Dudukovic, B.A. Toseland, Fluid dynamic parameters in bubble columns with internals, Chem. Eng. Sci. 54 (1999) 2187-2197. [35] C. Wong, M.M. Hossain, C. Davies, Performance of a continuous foam separation column as a function of process variables, Bioprocess Biosyst. Eng. 24 (2001) 73-81. [36] G. Besagni, F. Inzoli, Comprehensive experimental investigation of countercurrent bubble column hydrodynamics: holdup, flow regime transition, bubble size distributions and local flow properties, Chem. Eng. Sci. 146 (2016) 259-290. [37] G. Besagni, F. Inzoli, G.D. Guido, L.A. Pellegrini, The dual effect of viscosity on bubble column hydrodynamics, Chem. Eng. Sci. 158 (2017) 509-538. [38] Y. Xiao, H.R. Yuan, Y.Z. Pang, S.L. Chen, B.M. Zhu, D.X. Zou, J.W. Ma, L. Yu, X.J. Li, CO2 Removal from biogas by water washing system, Chin. J. Chem. Eng. 22 (2014) 950-953. [39] P. Galindo, A. Schäffer, K. Brechtel, S. Unterberger, G. Scheffknecht, Experimental research on the performance of CO2-loaded solutions of MEA and DEA at regeneration conditions, Fuel 101 (2012) 2-8. [40] F.M. Chu, L.J. Yang, X.Z. Du, Y.P. Yang, Mass transfer and energy consumption for CO2 absorption by ammonia solution in bubble column, Appl. Energy 190 (2017) 1068-1080. [41] M.S. Jassim, G.T. Rochelle, Innovative absorber/stripper configurations for CO2 capture by aqueous monoethanolamine, Ind. Eng. Chem. Res. 45 (2005) 2465-2472. [42] B.A. Oyenekan, G.T. Rochelle, Alternative stripper configurations for CO2 capture by aqueous amines, AIChE J. 53 (2007) 3144-3154. [43] G. Puxty, R. Rowland, A. Allport, Q. Yang, M. Bown, R. Burns, M. Maeder, M. Attalla, Carbon dioxide postcombustion capture: a novel screening study of the carbon dioxide absorption performance of 76 amines, Environ. Sci. Technol. 43 (2009) 6427-6433. [44] F.M. Chu, L.J. Yang, X.Z. Du, Y.P. Yang, CO2 capture using MEA (monoethanolamine) aqueous solution in coal-fired power plants: modeling and optimization of the absorbing columns, Energy 109 (2016) 495-505. [45] R.A. Khatri, S.S.C. Chuang, Y. Soong, M. Gray, Thermal and chemical stability of regenerable solid amine sorbent for CO2 capture, Energy Fuels 20 (2006) 1514-1520. [46] D.J. Fauth, M.L. Gray, H.W. Pennline, H.M. Krutka, S. Sjostrom, A.M. Ault, Investigation of porous silica supported mixed-amine sorbents for postcombustion CO2 capture, Energy Fuels 26 (2012) 2483-2496. [47] M. Yao, Y.Y. Dong, X. Hu, X.X. Feng, A.P. Jia, G.Q. Xie, G.S. Hu, J.Q. Lu, M.F. Luo, M.H. Fan, Tetraethylenepentamine-modified silica nanotubes for lowtemperature CO2 capture, Energy Fuels 27 (2013) 7673-7680. [48] E. Stavitski, E.A. Pidko, S. Couck, T. Remy, E.J.M. Hensen, B.M. Weckhuysen, J. Denayer, J. Gascon, F. Kapteijin, Complexity behind CO2 capture on NH2-MIL-53(Al), Langmuir 27 (2011) 3970-3976. |