[1] A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature 238 (1972) 37-38. [2] M.A. Henderson, A surface science perspective on photocatalysis, Surf. Sci. Rep. 66 (2011) 185-297. [3] Y. Zhang, Y. Zhu, A. Wang, Q. Gao, Y. Qin, Y. Chen, X. Lu, Progress in molecularsimulation-based research on the effects of interface-induced fluid microstructures on flow resistance, Chin. J. Chem. Eng. 27 (2019) 1403-1415. [4] W. Langel, Car-Parrinello simulation of H2O dissociation on rutile, Surf. Sci. 496 (2002) 141-150. [5] L.A. Harris, A.A. Quong, Molecular chemisorption as the theoretically preferred pathway for water adsorption on ideal rutile TiO2(110), Phys. Rev. Lett. 93 (2004) 086105. [6] A. Tilocca, A. Selloni, Structure and reactivity of water layers on defect-free and fefective anatase TiO2(101) surfaces, J. Phys. Chem. B 108 (2004) 4743-4751. [7] Z. Zhang, P. Fenter, L. Cheng, N.C. Sturchio, M.J. Bedzyk, M. Predota, A. Bandura, J.D. Kubicki, S.N. Lvov, P.T. Cummings, A.A. Chialvo, M.K. Ridley, P. Bénézeth, L. Anovitz, D.A. Palmer, M.L. Machesky, D.J. Wesolowski, Ion adsorption at the rutile water interface: Linking molecular and macroscopic properties, Langmuir 20 (2004) 4954-4969. [8] J.P. Fitts, M.L. Machesky, D.J. Wesolowski, X. Shang, J.D. Kubicki, G.W. Flynn, T. F. Heinz, K.B. Eisenthal, Second-harmonic generation and theoretical studies of protonation at the water/α-TiO2 interface, Chem. Phys. Lett. 411 (2005) 399-403. [9] M. Predota, L. Vlček, Comment on Parts 1 and 2 of the Series “Electric double layer at the rutile (110) surface”, J. Phys. Chem. B 111 (2007) 1245-1247. [10] Z. Zhang, P. Fenter, N.C. Sturchio, M.J. Bedzyk, M.L. Machesky, D.J. Wesolowski, Structure of rutile TiO2 in water and Rb+ at pH 12: Inter-relationship among surface charge, interfacial hydration structure, and substrate structural displacements, Surf. Sci. 601 (2007) 1129-1143. [11] W. Liu, J.-G. Wang, W. Li, X. Guo, L. Lu, X. Lu, X. Feng, C. Liu, Z. Yang, A shortcut for evaluating activities of TiO2 facets: Water dissociative chemisorption on TiO2-B (100) and (001), PCCP 12 (2010) 8721-8727. [12] R.S. Kavathekar, P. Dev, N.J. English, J.M.D. MacElroy, Molecular dynamics study of water in contact with the TiO2 rutile-110, 100, 101, 001 and anatase-101, 001 surface, Mol. Phys. 109 (2011) 1649-1656. [13] S. Tan, H. Feng, Y. Ji, Y. Wang, J. Zhao, A. Zhao, B. Wang, Y. Luo, J. Yang, J.G. Hou, Observation of photocatalytic dissociation of water on terminal Ti sites of TiO2(110)-1×1 surface, J. Am. Chem. Soc. 134 (2012) 9978-9985. [14] P.J.D. Lindan, C. Zhang, Exothermic water dissociation on the rutile TiO2(110) surface, Phys. Rev. B 72 (2005) 075439. [15] P.M. Kowalski, B. Meyer, D. Marx, Composition, structure, and stability of the rutile TiO2(110) surface: Oxygen depletion, hydroxylation, hydrogen migration, and water adsorption, Phys. Rev. B 79 (2009) 115410. [16] P. Roy, S. Berger, P. Schmuki, TiO2 nanotubes: synthesis and applications, Angew. Chem. Int. Ed. 50 (2011) 2904-2939. [17] E. Mamontov, L. Vlcek, D.J. Wesolowski, P.T. Cummings, W. Wang, L.M. Anovitz, J. Rosenqvist, C.M. Brown, V. Garcia Sakai, Dynamics and structure of hydration water on rutile and cassiterite nanopowders studied by quasielastic neutron scattering and molecular dynamics simulations, J. Phys. Chem. C 111 (2007) 4328-4341. [18] E. Mamontov, D.J. Wesolowski, L. Vlcek, P.T. Cummings, J. Rosenqvist, W. Wang, D.R. Cole, Dynamics of hydration water on rutile studied by backscattering neutron spectroscopy and molecular dynamics simulation, J. Phys. Chem. C 112 (2008) 12334-12341. [19] E. Mamontov, L. Vlcek, D.J. Wesolowski, P.T. Cummings, J. Rosenqvist, W. Wang, D.R. Cole, L.M. Anovitz, G. Gasparovic, Suppression of the dynamic transition in surface water at low hydration levels: A study of water on rutile, Phys. Rev. E 79 (2009) 051504. [20] Q. Gravndyan, O.A. Akbari, D. Toghraie, A. Marzban, R. Mashayekhi, R. Karimi, F. Pourfattah, The effect of aspect ratios of rib on the heat transfer and laminar water/TiO2 nanofluid flow in a two-dimensional rectangular microchannel, J. Mol. Liq. 236 (2017) 254-265. [21] M. Predota, P.T. Cummings, D.J. Wesolowski, Electric double layer at the rutile (110) surface. 3. Inhomogeneous viscosity and diffusivity measurement by computer simulations, J. Phys. Chem. C 111 (2007) 3071-3079. [22] G. Hummer, J.C. Rasaiah, J.P. Noworyta, Water conduction through the hydrophobic channel of a carbon nanotube, Nature 414 (2001) 188-190. [23] K. Koga, G.T. Gao, H. Tanaka, X.C. Zeng, Formation of ordered ice nanotubes inside carbon nanotubes, Nature 412 (2001) 802-805. [24] F. Xu, Y. Song, M. Wei, Y. Wang, Water flow through interlayer channels of two-dimensional materials with various hydrophilicities, J. Phys. Chem. C 122 (2018) 15772-15779. [25] F. Xu, M. Wei, X. Zhang, Y. Song, W. Zhou, Y. Wang, How pore hydrophilicity influences water permeability? Research 2019 (2019) 10. [26] Y. Song, M. Wei, F. Xu, Y. Wang, Molecular simulations of water transport resistance in polyamide RO membranes: Interfacial and interior contributions, Engineering 6 (2020) 577-584. [27] A. Miao, M. Wei, F. Xu, Y. Wang, Influence of membrane hydrophilicity on water permeability: An experimental study bridging simulations, J. Membr. Sci. 604 (2020) 118087. [28] G. Zhou, L. Huang, A review of recent advances in computational and experimental analysis of first adsorbed water layer on solid substrate, Mol. Simul. 1-17 (2020). [29] M.J. Wei, L. Zhang, L. Lu, Y. Zhu, K.E. Gubbins, X. Lu, Molecular behavior of water in TiO2 nano-slits with varying coverages of carbon: a molecular dynamics simulation study, PCCP 14 (2012) 16536-16543. [30] M.J. Wei, J. Zhou, X. Lu, Y. Zhu, W. Liu, L. Lu, L. Zhang, Diffusion of water molecules confined in slits of rutile TiO2(110) and graphite(0001), Fluid Phase Equilib. 302 (2011) 316-320. [31] A.V. Bandura, J.D. Kubicki, Derivation of force field parameters for TiO2 H2O systems from ab initio calculations, J. Phys. Chem. B 107 (2003) 11072-11081. [32] M. Alimohammadi, K.A. Fichthorn, A force field for the interaction of water with TiO2 surfaces, J. Phys. Chem. C 115 (2011) 24206-24214. [33] A.C.T. van Duin, S. Dasgupta, F. Lorant, W.A. Goddard, ReaxFF: A reactive force field for hydrocarbons, J. Phys. Chem. A 105 (2001) 9396-9409. [34] E. Gonzalez Solveyra, E. de la Llave, V. Molinero, G.J.A.A. Soler-Illia, D.A. Scherlis, Structure, dynamics and phase behavior of water in TiO2 nanopores, J. Phys. Chem. C (2013) 3330-3342. [35] M. Predota, A.V. Bandura, P.T. Cummings, J.D. Kubicki, D.J. Wesolowski, A.A. Chialvo, M.L. Machesky, Electric double layer at the rutile (110) surface. 1. Structure of surfaces and interfacial water from molecular dynamics by use of ab initio potentials, J. Phys. Chem. B 108 (2004) 12049-12060. [36] X. Lu, G. Wang, T. Zhai, M. Yu, J. Gan, Y. Tong, Y. Li, Hydrogenated TiO2 nanotube arrays for supercapacitors, Nano Lett. 12 (2012) 1690-1696. [37] J. Wang, Y. Zhu, J. Zhou, X.H. Lu, Diameter and helicity effects on static properties of water molecules confined in carbon nanotubes, PCCP 6 (2004) 829-835. [38] S. Monti, A.C.T. van Duin, S.Y. Kim, V. Barone, Exploration of the conformational and reactive dynamics of glycine and diglycine on TiO2: computational investigations in the gas phase and in solution, J. Phys. Chem. C 116 (2012) 5141-5150. [39] S.Y. Kim, N. Kumar, P. Persson, J. Sofo, A.C.T. van Duin, J.D. Kubicki, Development of a ReaxFF reactive force Ffeld for titanium dioxide/water systems, Langmuir 29 (2013) 7838-7846. [40] H.J.C. Berendsen, J.R. Grigera, T.P. Straatsma, The missing term in effective pair potentials, J. Phys. Chem. 91 (1987) 6269-6271. [41] B. Guillot, Y. Guissani, How to build a better pair potential for water, J. Chem. Phys. 114 (2001) 6720-6733. [42] S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys. 117 (1995) 1-19. [43] T. Head-Gordon, G. Hura, Water structure from scattering experiments and simulation, Chem. Rev. 102 (2002) 2651-2670. [44] D.J. Wesolowski, J.O. Sofo, A.V. Bandura, Z. Zhang, E. Mamontov, M. Predota, N. Kumar, J.D. Kubicki, P.R.C. Kent, L. Vlcek, M.L. Machesky, P.A. Fenter, P.T. Cummings, L.M. Anovitz, A.A. Skelton, J. Rosenqvist, Comment on “Structure and dynamics of liquid water on rutile TiO2(110)”, Phys. Rev. B 85 (2012) 167401. [45] Y. Li, Z. Yang, N. Hu, R. Zhou, X. Chen, Insights into hydrogen bond dynamics at the interface of the charged monolayer-protected Au nanoparticle from molecular dynamics simulation, J. Chem. Phys. 138 (2013) 184703. [46] G. Zhou, C. Liu, L. Huang, Molecular dynamics simulation of first-adsorbed water layer at titanium dioxide surfaces, J. Chem. Eng. Data 63 (2018) 2420-2429. [47] A. Luzar, D. Chandler, Hydrogen-bond kinetics in liquid water, Nature 379 (1996) 55-57. [48] P. Mark, L. Nilsson, Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K, J. Phys. Chem. A 105 (2001) 9954-9960. [49] D. van der Spoel, P.J. van Maaren, P. Larsson, N. Tîmneanu, Thermodynamics of hydrogen bonding in hydrophilic and hydrophobic media, J. Phys. Chem. B 110 (2006) 4393-4398. [50] A. Chandra, Effects of ion atmosphere on hydrogen-bond dynamics in aqueous electrolyte solutions, Phys. Rev. Lett. 85 (2000) 768-771. [51] F.W. Starr, J.K. Nielsen, H.E. Stanley, Hydrogen-bond dynamics for the extended simple point-charge model of water, Phys. Rev. E 62 (2000) 579-587. [52] F.N. Keutsch, R.J. Saykally, Water clusters: Untangling the mysteries of the liquid, one molecule at a time, Proc. Natl. Acad. Sci. 98 (2001) 10533-10540. [53] P. Liu, E. Harder, B.J. Berne, Hydrogen-bond dynamics in the air water interface, J. Phys. Chem. B 109 (2005) 2949-2955. [54] R. Kumar, J.R. Schmidt, J.L. Skinner, Hydrogen bonding definitions and dynamics in liquid water, J. Chem. Phys. 126 (2007) 204107-204112. [55] V.P. Voloshin, Y.I. Naberukhin, Hydrogen bond lifetime distributions in computer-simulated water, J. Struct. Chem. 50 (2009) 78-89. [56] W. Cao, L. Huang, M. Ma, L. Lu, X. Lu, Water in narrow carbon nanotubes: Roughness promoted diffusion transition, J. Phys. Chem. C 122 (2018) 19124-19132. |