[1] X.M. Zhang, M. Kano, M. Tani, J. Mori, J. Ise, K. Harada, Prediction and causal analysis of defects in steel products:Handling nonnegative and highly overdispersed count data, Control Eng. Pract. 95(2020) 104258. [2] Y. Zheng, H.J. Fang, H.O. Wang, Takagi-Sugeno fuzzy model-based fault detection for networked control systems with markov delays, IEEE Trans. Syst. Man and Cybernetics Part B Cybernetics 36(3) (2006) 924-929. [3] X. Ma, Y.B. Si, Z.Y. Yuan, Y.H. Qin, Y.Q. Wang, Multi-step dynamic slow feature analysis for industrial process monitoring, IEEE Trans. Inst. Measur. 69(12) (2020) 9535-9548. [4] Y.B. Si, Y.Q. Wang, D.H. Zhou, Key-performance-indicator-related process monitoring based on improved kernel partial least squares, IEEE Trans. Ind. Electron. 68(3) (2021) 2626-2636. [5] Y. Tao, H.B. Shi, B. Song, S. Tan, A novel dynamic weight principal component analysis method and hierarchical monitoring strategy for process fault detection and diagnosis, IEEE Trans. Ind. Electron. 67(9) (2020) 7994-8004. [6] K. Wang, J.H. Chen, Z.H. Song, Performance analysis of dynamic PCA for closedloop process monitoring and its improvement by output oversampling scheme, IEEE Trans. Control Syst. Technol. 27(1) (2019) 378-385. [7] Y.W. Zhang, S. Li, Z.Y. Hu, Improved multi-scale kernel principal component analysis and its application for fault detection, Chem. Eng. Res. Des. 90(9) (2012) 1271-1280. [8] J.M. Lee, C.K. Yoo, S.W. Choi, P.A. Vanrolleghem, I.B. Lee, Nonlinear process monitoring using kernel principal component analysis, Chem. Eng. Sci. 59(1) (2004) 223-234. [9] P. Nomikos, J.F. MacGregor, Monitoring batch processes using multiway principal component analysis, AIChE J. 40(1994) 1361-1375. [10] F. Pozo, Y. Vidal, O. Salgado, Wind turbine condition monitoring strategy through multiway PCA and multivariate inference, Energies 11(4) (2018) 749. [11] Z.Q. Ge, Z.H. Song, F.R. Gao, Review of recent research on data-based process monitoring, Ind. Eng. Chem. Res. 52(10) (2013) 3543-3562. [12] Y.Q. Chang, R.X. Ma, L.P. Zhao, F.L. Wang, S. Wang, Online operating performance evaluation for the plant-wide industrial process based on a three-level and multi-block method, Can. J. Chem. Eng. 97(S1) (2019) 1371-1385. [13] A. Jaworski, K. Wikiel, H. Wikiel, Application of multiblock and hierarchical PCA and PLS models for analysis of AC voltammetric data, Electroanalysis 17(15-16) (2005) 1477-1485. [14] Z.Q. Ge, Z.H. Song, Distributed PCA model for plant-wide process monitoring, Ind. Eng. Chem. Res. 52(5) (2013) 1947-1957. [15] M. Rezamand, M. Kordestani, R. Carriveau, D.-S.-K. Ting, M. Saif, A new hybrid fault detection method for wind turbine blades using recursive PCA and wavelet-based PDF, IEEE Sens. J. 20(4) (2020) 2023-2033. [16] C. Tong, A. Palazoglu, X.F. Yan, An adaptive multimode process monitoring strategy based on mode clustering and mode unfolding, J. Process Control 23(10) (2013) 1497-1507. [17] X. Wang, U. Kruger, G.W. Irwin, G. McCullough, N. McDowell, Nonlinear PCA with the local approach for diesel engine fault detection and diagnosis, IEEE Trans. Control Syst. Technol. 16(1) (2007) 122-129. [18] Z.C. Li, X.F. Yan, Ensemble learning model based on selected diverse principal component analysis models for process monitoring, J. Chemom. 32(4) (2018) e3010. [19] J.F. MacGregor, C. Jaeckle, C. Kiparissides, M. Koutoudi, Process monitoring and diagnosis by multiblock PLS methods, AIChE J. 40(5) (1994) 826-838. [20] S.J. Qin, S. Valle, M.J. Piovoso, On unifying multiblock analysis with application to decentralized process monitoring, J. Chemom. 15(9) (2001) 715-742. [21] S.J. Zhao, J. Zhang, Y.M. Xu, Monitoring of processes with multiple operating modes through multiple principle component analysis models, Ind. Eng. Chem. Res. 43(22) (2004) 7025-7035. [22] Q.C. Jiang, X.F. Yan, Monitoring multi-mode plant-wide processes by using mutual information-based multi-block PCA, joint probability, and Bayesian inference, Chemometrics and Intelligent Laboratory Syst. 136(2014) 121-137. [23] Z.Q. Ge, Z.H. Song, Mixture Bayesian regularization method of PPCA for multimode process monitoring, AIChE J. 56(11) (2010) 2838-2849. [24] J. Yu, S.J. Qin, Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models, AIChE J. 54(7) (2008) 1811-1829. [25] J. Yu, Fault detection using principal components-based gaussian mixture model for semiconductor manufacturing processes, IEEE Trans. Semicond. Manuf. 24(3) (2011) 432-444. [26] J.L. Zhu, Z.Q. Ge, Z.H. Song, Distributed Gaussian mixture model for monitoring plant-wide processes with multiple operating modes, IFAC J. Syst. Control 6(2018) 1-15. [27] Q.C. Jiang, X.F. Yan, Multimode process monitoring using variational bayesian inference and canonical correlation analysis, IEEE Trans. Autom. Sci. Eng. 16(4) (2019) 1814-1824. [28] Q.P. He, J. Wang, Fault detection using the k-nearest neighbor rule for semiconductor manufacturing processes, IEEE Trans. Semicond. Manuf. 20(4) (2007) 345-354. [29] Q.P. He, J. Wang, Principal component based k-nearest-neighbor rule for semiconductor process fault detection, American Control Conference, IEEE, Seattle, WA, USA, (2008) 1606-1611. [30] H.H. Ma, Y. H, H.B. Shi, A novel local neighborhood standardization strategy and its application in fault detection of multimode processes, Chemometr. Intell. Lab. Syst. 118(2012) 287-300. [31] X.G. Deng, X.M. Tian, Multimode process fault detection using local neighborhood similarity analysis, Chin. J. Chem. Eng. 22(11) (2014) 1260-1267. [32] Y. Zheng, S.M. Mao, S.J. Liu, D.S.H. Wong, Y.W. Wang, Normalized relative RBC based minimum risk Bayesian decision approach for fault diagnosis of industrial process, IEEE Trans. Ind. Electron. 63(12) (2016) 7723-7732. [33] Y. Zheng, B. Ai, D.S.H. Wong, S.S. Jang, Y.W. Wang, J. Zhang, An EWMA algorithm with a cycled resetting (CR) discount factor for drift and fault of high-mix Run-To-Run Control, IEEE Trans. Ind. Informatics 6(2) (2010) 229-242. [34] Z.Q. Ge, Z.H. Song, Multimode process monitoring based on Bayesian method, J. Chemom. 23(12) (2010) 636-650. [35] J.J. Downs, E.F. Vogel, A plant-wide industrial process control problem, Comput. Chem. Eng. 17(3) (1993) 245-255. |