[1] S.N. Hoda, S.A.G. Nassab, J.J. Ebrahim, Three dimensional numerical simulation of combustion and heat transfer in porous radiant burners, In. J. Therm. Sci. 145(2019) 106024. [2] F. Mousazadeh, H.E.A. Akker, R.F. Mudde, Direct numerical simulation of an exothermic gas-phase reaction in a packed bed with random particle distribution, Chem. Eng. Sci. 100(2013) 259-265. [3] S.M. Hashemi, S.A. Hashemi, Flame stability analysis of the premixed methaneair combustion in a two-layer porous media burner by numerical simulation, Fuel 202(2017) 56-65. [4] H.B. Gao, Z.G. Qu, Y.L. He, W.Q. Tao, Experimental study of combustion in a double-layer burner packed with alumina pellets of different diameters, Appl. Energy 100(2012) 295-302. [5] H.B. Gao, Z.G. Qu, W.Q. Tao, Y.L. He, J. Zhou, Experimental study of biogas combustion in a two-layer packed bed burner, Energy & Fuels 25(2011) 2887-2895. [6] H.B. Gao, Z.G. Qu, X.B. Feng, W.Q. Tao, Methane/air premixed combustion in a two-layer porous burner with different foam materials, Fuel 115(2014) 154-161. [7] V. Bubnovich, M. Toledo, L. Henríquez, C. Rosas, J. Romero, Flame stabilization between two beds of alumina balls in a porous burner, Appl. Therm. Eng. 30(2010) 92-95. [8] C.H. Zheng, L.M. Cheng, A. Saveliev, Z.Y. Luo, K.F. Cen, Gas and solid phase temperatures measurements of porous media combustion, Proc. Combust. Inst. 33(2010) 3301-3308. [9] A.W. Fan, L.H. Li, W. Yang, Z.L. Yuan, Comparison of combustion efficiency between micro combustors with single-and double-layered walls:a numerical study, Chem. Eng. Process. 137(2019) 39-47. [10] Y. Liu, J. Zhang, A.W. Fan, J.L. Wan, H. Yao, W. Liu, Numerical investigation of CH4/O2 mixing in Y-shaped mesoscale combustors with/without porous media, Chem. Eng. Process. 79(2014) 7-13. [11] J. Li, Q.Q. Li, J.R. Shi, X.L. Liu, Z.L. Guo, Numerical study on heat recirculation in a porous micro-combustor, Combust. Flame 171(2016) 152-161. [12] H. Liu, S. Dong, B.W. Li, H.G. Chen, Parametric investigations of premixed methane-air combustion in two-section porous media by numerical simulation, Fuel 89(2010) 1736-1742. [13] G.N. Li, H. Zhou, X.P. Qian, K.F. Cen, Determination of hydrogen production from Rich filtration combustion with detailed kinetics based CFD method, Chin. J. Chem. Eng. 16(2) (2008) 292-298. [14] M.J.S. Lemos, J.E.A. Coutinho, Turbulent flow in porous combustor using the thermal non-equilibrium hypothesis and radiation boundary condition, Int. J. Heat Mass Transfer 115(2017) 1043-1054. [15] X.P. Wen, T.F. Su, Z.G. Liu, M.Z. Xie, F.H. Wang, Z.C. Liu, Numerical investigation on porous media quenching behaviors of premixed deflagrating flame using RANS/LES model, J. Therm. Sci. 28(2019) 780-788. [16] N. Djordjevic, P. Habisreuther, N. Zarzalis, A numerical investigation of the flame stability in porous burners employing various ceramic sponge-like structures, Chem. Eng. Sci. 66(2011) 682-688. [17] H.Y. Zeng, Y.Q. Wang, Y.X. Shi, M. Ni, N.S. Cai, Syngas production from CO2/CH4 rich combustion in a porous media burner:experimental characterization and elementary reaction model, Fuel 199(2017) 413-419. [18] L.S. Jiang, H.S. Liu, S.Y. Suo, M.Z. Xie, M.L. Bai, Simulation of propane-air premixed combustion process in randomly packed beds, Appl. Therm. Eng. 141(2018) 153-163. [19] J.R. Shi, H.X. Xiao, J. Li, N. Li, Y.F. Xia, Y.N. Xu, Two-dimensional pore-level simulation of low-velocity filtration combustion in a packed bed with staggered arrangements of discrete, Combust. Sci. Techno. 189(2017) 1260-1276. [20] Z.S. Chen, M.Z. Xie, H.S. Liu, M. Yue, Numerical investigation on the thermal non-equilibrium in low-velocity reacting flow within porous media, Int. J. Heat Mass Transfer 77(2014) 585-599. [21] L. Lu, X.P. Du, C.Y. Xin, Modeling and simulation of local thermal nonequilibrium effects in porous media with small thermal conductivity, Transport Porous Med. 124(2018) 553-575. [22] C.Y. Xin, L. Lu, B.B. Shi, Z.X. Liu, Numerical investigation of local thermal nonequilibrium effects in coal porous media with cryogenic nitrogen injection, Int. J. Therm. Sci. 133(2018) 32-40. [23] I. Yakovlev, S. Zambalov, Three-dimensional pore-scale numerical simulation of methane-air combustion in inert porous media under the conditions of upstream and downstream combustion wave propagation through the media, Combust. Flame 209(2019) 74-98. [24] A.G. Dixon, M. Nijemeisland, E.H. Stitt, Systematic mesh development for 3D CFD simulation of fixed beds:contact points study, Comput. Chem. Eng. 48(2013) 135-153. [25] M. Sahraoui, M. Kaviany, Direct simulation vs volume-averaged treatment of adiabatic, premixed flame in a porous medium, Int. J. Heat Mass Transfer 37(1994) 2817-2834. [26] F. Contarin, A.V. Saveliev, A.A. Fridman, L.A. Kennedy, A reciprocal flow filtration combustor with embedded heat exchangers:numerical study, Int. J. Heat Mass Transfer 46(2003) 949-961. [27] M. Munro, Evaluated material properties for a sintered alpha-alumina, J. Am. Ceram. Soc. 80(2010) 1919-1928. |