[1] P. Sukul, M. Spiteller, Sulfonamides in the Environment as Veterinary Drugs, Reviews of Environmental Contamination and Toxicology, Springer, New York (2006) [2] S.S. Weng, K.L. Ku, H.T. Lai, The implication of mediators for enhancement of laccase oxidation of sulfonamide antibiotics, Bioresour. Technol. 113 (2012) 259-264 [3] A.Y.C. Lin, T.H. Yu, C.F. Lin, Pharmaceutical contamination in residential, industrial, and agricultural waste streams: Risk to aqueous environments in Taiwan, Chemosphere 74 (2008) 131-141 [4] J.S. Lin, H.Y. Pan, S.M. Liu, H.-T. Lai, Effects of light and microbial activity on the degradation of two fluoroquinolone antibiotics in pond water and sediment, J. Environ. Sci. Health Part B 45 (2010) 456-465 [5] C.L. Zhang, F.A. Wang, Y. Wang, Solubilities of sulfadiazine, sulfamethazine, sulfadimethoxine, sulfamethoxydiazine, sulfamonomethoxine, sulfamethoxazole, and sulfachloropyrazine in water from (298.15 to 333.15) K, J. Chem. Eng. Data 52 (2007) 1563-1566 [6] C.L. Zhang, S.Y. Li, Y. Wang, Solubilities of sulfamethazine, sulfadimethoxine, sulfamethoxydiazine, sulfamonomethoxine, sulfamethoxazole, and sulfaquinoxaline in 1-octanol from (298.15 to 333.15) K, J. Chem. Eng. Data. 54 (2009) 1131-1134 [7] G.T. Hefter, R.P.T. Tomkins, John Wiley & Sons Ltd, Chichester, UK (2004) 259-311 [8] Y.L. Shi, C. Qian, X.Z. Chen, Solubility measurement and correlation of (+)-biotin intermediate lactone in different organic solvents from 287.15 to 323.75 K, J. Chem. Eng. Data. 61 (2016) 1509-1516 [9] M. Charles, Hansen, Hansen Solubility Parameters - A User’s Handbook, CRC Press, New York (1998) [10] C.M. Hansen, A.L. Smith, Using Hansen solubility parameters to correlate solubility of C60 fullerene in organic solvents and in polymers, Carbon 42 (2004) 1591-1597 [11] Y.M. Wan, H.X. He, P.S. Zhang, Z.B. Huang, R. Zhao, J. Sha, T. Li, B.Z. Ren, Solid-liquid equilibrium solubility and thermodynamic properties of cis-5-norbornene-endo-2,3-dicarboxylic anhydride in fourteen pure solvents and three binary solvents at various temperatures, J. Mol. Liq. 297 (2020) 111396 [12] A. Apelblat, E. Manzurola, Solubility of oxalic, malonic, succinic, adipic, maleic, malic, citric, and tartaric acids in water from 278.15 to 338.15 K, J. Chem. Thermodyn. 19 (1987) 317-320 [13] D. Xu, X. Xiong, L. Yang, Z. Zhang, X. Wang, Determination of the solubility of ammonium dihydrogen phosphate in water-ethanol system at different temperatures from 283.2 to 343.2 K, J. Chem. Eng. Data 61 (2016) 78-82 [14] N. Tang, W. Shi, W. Yan, Modified method for measuring the solubility of pharmaceutical compounds in organic solvents by visual camera, J. Chem. Eng. Data 61 (2016) 35-40 [15] H. Buchowski, A. Khiat, Solubility of solids in liquids: one-parameter solubility equation, Fluid Phase Equilibria 25 (1986) 273-278 [16] K. Zhao, L. Lin, C. Li, S. Du, C. Huang, Y. Qin, P. Yang, K. Li, J. Gong, Measurement and correlation of solubility of γ-aminobutyric acid in different binary solvents, J. Chem. Eng. Data 61 (2016) 1210-1220 [17] S.M. Walas, 8 - Liquid-Solid Equilibrium, Phase Equilibria in Chemical Engineering, Butterworth-Heinemann, Boston, USA (1985) 395-432 [18] H. Shi, Y. Xie, C. Du, Y. Cong, J. Wang, H. Zhao, Thermodynamic study of the solubility of 2,4'-dihydroxydiphenyl sulfone in nine organic solvents from T=(278.15 to 313.15)K and thermodynamic properties of dissolution, J. Chem. Thermodyn. 102 (2016) 79-88 [19] G.M. Wilson, Vapor-Liquid Equilibrium. XI. A new expression for the excess free energy of mixing, J. Am. Chem. Soc. 86 (1964) 127-130 [20] Front Matter A2 - Smallwood, Ian M, Handbook of Organic Solvent Properties, Butterworth-Heinemann, Oxford, 1996. [21] H. Renon, J.M. Prausnitz, Estimation of parameters for the NRTL equation for excess Gibbs energies of strongly nonideal liquid mixtures, Ind. Eng. Chem. Process Des. Dev. 8 (1969) 413-419 [22] M. Valavi, M. Svard, A.C. Rasmuson, Prediction of the solubility of medium-sized pharmaceutical compounds using a temperature-dependent NRTL-SAC model, Ind. Eng. Chem. Res. 55 (2016) 11150-11159 [23] A. Jouyban, Review of the cosolvency models for predicting solubility of drugs in water-cosolvent mixtures, J. Pharm. Pharm. Sci. 11 (2008) 32 [24] A. Jouyban, M. Fakhree, W.E. Acree Jr., Correct derivation of cosolvency models and some comments on “Solubility of fenofibrate in different binary solvents: Experimental data and results of thermodynamic modelling”, J. Chem. Eng. Data 62 (2017) 1153–1156. [25] H. Rezaei, E. Rahimpour, T. Ghafourian, F. Martinez, M. Barzegar-Jalali, A. Jouyban, Solubility of caffeine in N-methyl-2-pyrrolidone + ethanol mixture at different temperatures, J. Mol. Liq. 300 (2020) 112354 [26] Y.M. Shen, W.J. Liu, Z.H. Bao, Solubility measurement and thermodynamic modeling of DoxycyclineHyclate two binary solvent systems at 276.95-323.75 K, J. Mol. Liq. 289 (2019) 111138 [27] O. Ferreira, S.P. Pinho, Solubility of flavonoids in pure solvents, Ind. & Eng. Chem. Res. 51 (2012) 6586-6590 [28] W. Liu, Y. Guo, J. Chen, X. Yu, Measurement and correlation of the solubility of telmisartan (Form A) in nine different solvents from 277.85 to 338.35 K, J. Solu. Chem. 45 (2016) 932-946 [29] G.T. Hefter, R.P.T. Tomkins, John Wiley & Sons, Ltd, Chichester, UK (2004) [30] B. Liu, H. Sun, J. Wang, Q. Yin, Thermodynamic analysis and correlation of solubility of disodium 5-guanylate heptahydrate in aqueous ethanol mixtures, Fluid Phase Equilib. 370 (2014) 58-64 |