[1] B.H. Diya'uddeen, W.M.A.W. Daud, A.R. Abdul Aziz, Treatment technologies for petroleum refinery effluents:A review, Process. Saf. Environ. Prot. 89 (2) (2011) 95-105 [2] G.J. Rincón, E.J. la Motta, Simultaneous removal of oil and grease, and heavy metals from artificial bilge water using electro-coagulation/flotation, J. Environ. Manage. 144 (2014) 42-50 [3] E.T. Igunnu, G.Z. Chen, Produced water treatment technologies, Int. J. Low-Carbon Technol. 9 (3) (2014) 157-177 [4] OSPAR Commission, OSPAR Recommendation 2006/4 Amending OSPAR Recommendation 2001/1 for the Management of Produced Water from Offshore Installations, https://www.ospar.org/documents?d=32608., 2006. [5] A.S. Heeres, J.J. Heijnen, L.A.M. van der Wielen, M.C. Cuellar, Gas bubble induced oil recovery from emulsions stabilised by yeast components, Chem. Eng. Sci. 145 (2016) 31-44 [6] H. Chakibi, I. Hénaut, A. Salonen, D. Langevin, J.F. Argillier, Role of bubble-drop interactions and salt addition in flotation performance, Energy Fuels 32 (3) (2018) 4049-4056 [7] M. Dudek, G. Øye, Microfluidic study on the attachment of crude oil droplets to gas bubbles, Energy Fuels 32 (10) (2018) 10513-10521 [8] R. Moosai, R.A. Dawe, Gas attachment of oil droplets for gas flotation for oily wastewater cleanup, Sep. Purif. Technol. 33 (3) (2003) 303-314 [9] S.L. Yan, X.Y. Yang, Z.S. Bai, X. Xu, H.L. Wang, Drop attachment behavior of oil droplet-gas bubble interactions during flotation, Chem. Eng. Sci. 223 (2020) 115740 [10] W.T. Strickland Jr, Laboratory results of cleaning produced water by gas flotation, Soc. Petroleum Eng. J. 20 (3) (1980) 175-190 [11] M. Eftekhardadkhah, S.V. Aanesen, K. Rabe, G. Øye, Oil removal from produced water during laboratory- and pilot-scale gas flotation:the influence of interfacial adsorption and induction times, Energy Fuels 29 (11) (2015) 7734-7740 [12] M. Eftekhardadkhah, G. Oye, Induction and coverage times for crude oil droplets spreading on air bubbles, Environ. Sci. Technol. 47 (24) (2013) 14154-14160 [13] I. Sven-Nilsson, Einfluß der Berührungszeitzwischen Mineral und Luftblase Bei der Flotation, Kolloid-Zeitschrift 69 (2) (1934) 230-232 [14] D.I. Verrelli, P.T.L. Koh, A.V. Nguyen, Particle-bubble interaction and attachment in flotation, Chem. Eng. Sci. 66 (23) (2011) 5910-5921 [15] A.V. Nguyen, A.H.J. Schulze, Colloidal Science of Flotation, Marcel Dekker, New York, 2004 [16] A.V. Nguyen, D.A. An-Vo, T. Tran-Cong, G.M. Evans, A review of stochastic description of the turbulence effect on bubble-particle interactions in flotation, Int. J. Miner. Process. 156 (2016) 75-86 [17] S. Goel, G.J. Jameson, Detachment of particles from bubbles in an agitated vessel, Miner. Eng. 36-38 (2012) 324-330 [18] T.Y. Liu, M.P. Schwarz, CFD-based multiscale modelling of bubble-particle collision efficiency in a turbulent flotation cell, Chem. Eng. Sci. 64 (24) (2009) 5287-5301 [19] J.B. Yianatos, Fluid flow and kinetic modelling in flotation related processes, Chem. Eng. Res. Des. 85 (12) (2007) 1591-1603 [20] H. Darabi, S.M.J. Koleini, D. Deglon, B. Rezai, M. Abdollahy, Particle image velocimetry study of the turbulence characteristics in an aerated flotation cell, Ind. Eng. Chem. Res. 56 (46) (2017) 13919-13928 [21] H. Schubert, C. Bischofberger, On the microprocesses air dispersion and particle-bubble attachment in flotation machines as well as consequences for the scale-up of macroprocesses, Int. J. Miner. Process. 52 (4) (1998) 245-259 [22] C.M. Phan, A.V. Nguyen, J.D. Miller, G.M. Evans, G.J. Jameson, Investigations of bubble-particle interactions, Int. J. Miner. Process. 72 (1-4) (2003) 239-254 [23] V. Sarrot, P. Guiraud, D. Legendre, Determination of the collision frequency between bubbles and particles in flotation, Chem. Eng. Sci. 60 (22) (2005) 6107-6117 [24] A.V. Nguyen, L. Alexandrova, L. Grigorov, G.J. Jameson, Dewetting kinetics on silica substrates:Three phase contact expansion measurements for aqueous dodecylammonium chloride films, Miner. Eng. 19 (6-8) (2006) 651-658 [25] B. Shahbazi, B. Rezai, S.M. JavadKoleini, Bubble-particle collision and attachment probability on fine particles flotation, Chem. Eng. Process.:Process. Intensif. 49 (6) (2010) 622-627 [26] Z. Brabcová, T. Karapantsios, M. Kostoglou, P. Basařová, K. Matis, Bubble-particle collision interaction in flotation systems, Colloids Surfaces A:Physicochem. Eng. Aspects 473 (2015) 95-103 [27] M. Firouzi, A.V. Nguyen, S.H. Hashemabadi, The effect of microhydrodynamics on bubble-particle collision interaction, Miner. Eng. 24 (9) (2011) 973-986 [28] W. Thielicke, E.J. Stamhuis, PIVlab-towards user-friendly, affordable and accurate digital particle image velocimetry in MATLAB, J. Open Res. Softw. 2 (2014) 30 [29] A.V. Nguyen, G.M. Evans, Movement of fine particles on an air bubble surface studied using high-speed video microscopy, J. Colloid Interface Sci. 273 (1) (2004) 271-277 [30] Z.L. Liu, Y. Zheng, PIV study of bubble rising behavior, Powder Technol. 168 (1) (2006) 10-20 |