[1] M. Kobayashi, R. Kuma, A. Morita, Low temperature selective catalytic reduction of NO by NH3 over V2O5 supported on TiO2: SiO2: MoO3, Catal. Lett. 112 (1) (2006) 37–44 [2] G. Qi, R.T. Yang, F.C. Rinaldi, Selective catalytic reduction of nitric oxide with hydrogen over Pd-based catalysts, J. Catal. 237 (2) (2006) 381–392 [3] A. Saleem, M. Galgano, S. Inaba, “Hitachi-Zosen DeNOnull process for fossil fuel-fired boilers,” In: Proceedings of the Second NOnull Control Technology Seminar Hosted by EPRI, Denver, CO, November 8 and 9, 1978. [4] M. Burke, L. Johnson, Ammonium Sulfate and Bisulfate Formation in Air Preheaters, Triangle Park, NC, Draft Final Report Project No. 68-02-2608, 1980. [5] S. Matsuda, T. Kamo, A. Kato, F. Nakajima, T. Kumura, H. Kuroda, Deposition of ammonium bisulfate in the selective catalytic reduction of nitrogen oxides with ammonia, Ind. Eng. Chem. Prod. Res. Dev. 21 (1) (1982) 48–52 [6] J.Y. Wei, L.J. Muzio, D. Dunn-Rankin, Formation temperature of ammonium bisulfate at simulated air preheater conditions, 5th Combust. Meet. 2007 6 (2007) 3369–3378 [7] J. Menasha, D. Dunn-Rankin, L. Muzio, J. Stallings, Ammonium bisulfate formation temperature in a bench-scale single-channel air preheater, Fuel 90 (7) (2011) 2445–2453 [8] L.N. Rong, Principles of Power Station Boilers[M], China Electric Power Press, Beijing, 1997 [9] R.K. Srivastava, C.A. Miller, C. Erickson, R. Jambhekar, Emissions of sulfur trioxide from coal-fired power plants, J Air Waste Manag Assoc 54 (6) (2004) 750–762 [10] C.H. Zheng, Y.F. Wang, Y. Liu, Z.D. Yang, R.Y. Qu, D. Ye, C.S. Liang, S.J. Liu, X. Gao, Formation, transformation, measurement, and control of SO3 in coal-fired power plants, Fuel 241 (2019) 327–346 [11] A. Al-Farraji, R. Marsh, J. Steer, A. Valera-Medina, Kinetics and performance of raw and torrefied biomass in a continuous bubbling fluidized bed gasifier, Waste Biomass Valorization 10 (5) (2019) 1365–1381 [12] K.A. Graham, A.F. Sarofim, Inorganic aerosols and their role in catalyzing sulfuric acid production in furnaces, J Air Waste Manag Assoc 48 (2) (1998) 106–112 [13] C.F. Cullis, M.F.R. Mulcahy, The kinetics of combustion of gaseous sulphur compounds, Combust. Flame 18 (2) (1972) 225–292 [14] J.S. Dennis, A.N. Hayhurst, The formation of SO3 in a fluidized bed, Combust. Flame 72 (3) (1988) 241–258 [15] Y. Liu, Experimental and reaction kinetics study of SO3 gas generation in coal-fired flue gas, Boiler. Technol. 20 (6) (2019) 74-77. (in Chinese) [16] D. Fleig, K. Andersson, F. Normann, F. Johnsson, SO3 formation under oxyfuel combustion conditions, Ind. Eng. Chem. Res. 50 (14) (2011) 8505–8514 [17] K.H. Kim, J.S. Choi, Kinetics and mechanism of the oxidation of sulfur dioxide on.alpha.-Fe2O3, J. Phys. Chem. 85 (17) (1981) 2447–2450 [18] H.P. Xiao, Q.Y. Cheng, J. Li, J.L. Ge, Enhanced effects of ash and slag on SO3 formation in the post-flame region, Environ. Sci. Pollut. Res. 26 (20) (2019) 20920–20928 [19] J. Svachula, L. Alemany, N. Ferlazzo, P. Forzatti, E. Tronconi, F. Bregani, Additions and corrections - oxidation of SO2 to SO3 over honeycomb De NOxing catalysts, Ind. Eng. Chem. Res. 33 (6) (1994) 1644 [20] E. Tronconi, A. Beretta, A.S. Elmi, P. Forzatti, S. Malloggi, A. Baldacci, A complete model of SCR monolith reactors for the analysis of interacting NOx reduction and SO2 oxidation reactions, Chem. Eng. Sci. 49 (24) (1994) 4277–4287 [21] Y.B. Song, J. Yang, L.P. Jin, C.Z. Lu, Research on Macro Performance Evaluation and Life Prediction Methods of SCR Denitration Catalysts, China. Electric. Power. 49 (4) (2016):17-22. (in Chinese) [22] Y.B. Song, S.J. Cheng, Y. Yao, D.X. An, L.P. Jin, C.J. Fang, On-line prediction method of ammonia escape concentration in SCR flue gas denitration system, China. Electric. Power. 51 (10) (2018) 145-149. (in Chinese) [23] R. Willi, B. Roduit, R.A. Koeppel, A. Wokaun, A. Baiker, Selective reduction of NO by NH3 over vanadia-based commercial catalyst: Parametric sensitivity and kinetic modelling, Chem. Eng. Sci. 51 (11) (1996) 2897–2902 [24] B. Roduit, A. Wokaun, A. Baiker, Global kinetic modeling of reactions occurring during selective catalytic reduction of NO by NH3over vanadia/titania-based catalysts, Ind. Eng. Chem. Res. 37 (12) (1998) 4577–4590 [25] H.G. Lintz, T. Turek, Intrinsic kinetics of nitric oxide reduction by ammonia on a vanadia-titania catalyst, Appl. Catal. A: Gen. 85 (1) (1992) 13–25 [26] F.Q. Si, C.E. Romero, Z. Yao, Z.G. Xu, R.L. Morey, B.N. Liebowitz, Inferential sensor for on-line monitoring of ammonium bisulfate formation temperature in coal-fired power plants, Fuel Process. Technol. 90 (1) (2009) 56–66 |