[1] J.R. Miller, P. Simon, Materials science. Electrochemical capacitors for energy management, Science 321 (5889) (2008) 651-652.pubmed.ncbi.nlm.nih.gov/18669852/ [2] P. Simon, Y. Gogotsi, B. Dunn, Materials science. Where do batteries end and supercapacitors begin? Science 343 (6176) (2014) 1210-1211.pubmed.ncbi.nlm.nih.gov/24626920/ [3] S. Bose, T. Kuila, A.K. Mishra, R. Rajasekar, N.H. Kim, J.H. Lee, Carbon-based nanostructured materials and their composites as supercapacitor electrodes, J. Mater. Chem. 22 (3) (2012) 767-784.Doi:10.1039/c1jm14468e [4] L.L. Zhang, R. Zhou, X.S. Zhao, Graphene-based materials as supercapacitor electrodes, J. Mater. Chem. 20 (29) (2010) 5983.Doi:10.1039/c000417k [5] P. Simon, Y. Gogotsi, Capacitive energy storage in nanostructured carbon-electrolyte systems, Acc. Chem. Res. 46 (5) (2013) 1094-1103.pubmed.ncbi.nlm.nih.gov/22670843/ [6] C. Portet, G. Yushin, Y. Gogotsi, Electrochemical performance of carbon Onions, nanodiamonds, carbon black and multiwalled nanotubes in electrical double layer capacitors, Carbon 45 (13) (2007) 2511-2518.Doi:10.1016/j.carbon.2007.08.024 [7] G. Lota, K. Fic, E. Frackowiak, Carbon nanotubes and their composites in electrochemical applications, Energy Environ. Sci. 4 (5) (2011) 1592.Doi:10.1039/c0ee00470g [8] J.J. Yoo, K. Balakrishnan, J.S. Huang, V. Meunier, B.G. Sumpter, A. Srivastava, M. Conway, A.L. Mohana Reddy, J. Yu, R. Vajtai, P.M. Ajayan, Ultrathin planar graphene supercapacitors, Nano Lett. 11 (4) (2011) 1423-1427.Doi:10.1021/nl200225j [9] L. Wei, M. Sevilla, A.B. Fuertes, R. Mokaya, G. Yushin, Hydrothermal carbonization of abundant renewable natural organic chemicals for high-performance supercapacitor electrodes, Adv. Energy Mater. 1 (3) (2011) 356-361.Doi:10.1002/aenm.201100019 [10] Y. Tao, X.Y. Xie, W. Lv, D.M. Tang, D.B. Kong, Z.H. Huang, H. Nishihara, T. Ishii, B.H. Li, D. Golberg, F.Y. Kang, T. Kyotani, Q.H. Yang, Towards ultrahigh volumetric capacitance:Graphene derived highly dense but porous carbons for supercapacitors, Sci. Rep. 3 (2013) 2975.Doi:10.1038/srep02975 [11] H. Li, Y. Tao, X.Y. Zheng, J.Y. Luo, F.Y. Kang, H.M. Cheng, Q.H. Yang, Ultra-thick graphene bulk supercapacitor electrodes for compact energy storage, Energy Environ. Sci. 9 (10) (2016) 3135-3142.Doi:10.1039/c6ee00941g [12] J. Vatamanu, Z.Z. Hu, D. Bedrov, C. Perez, Y. Gogotsi, Increasing energy storage in electrochemical capacitors with ionic liquid electrolytes and nanostructured carbon electrodes, J. Phys. Chem. Lett. 4 (17) (2013) 2829-2837.Doi:10.1021/jz401472c [13] C. Merlet, B. Rotenberg, P.A. Madden, P.L. Taberna, P. Simon, Y. Gogotsi, M. Salanne, On the molecular origin of supercapacitance in nanoporous carbon electrodes, Nat. Mater. 11 (4) (2012) 306-310.Doi:10.1038/nmat3260 [14] M. Salanne, B. Rotenberg, K. Naoi, K. Kaneko, P.L. Taberna, C.P. Grey, B. Dunn, P. Simon, Efficient storage mechanisms for building better supercapacitors, Nat. Energy 1 (6) (2016) 16070.Doi:10.1038/nenergy.2016.70 [15] J.S. Huang, B.G. Sumpter, V. Meunier, Theoretical model for nanoporous carbon supercapacitors, Angew. Chem. Int. Ed Engl. 47 (3) (2008) 520-524.pubmed.ncbi.nlm.nih.gov/18058966/ [16] P. Simon, Y. Gogotsi, Materials for electrochemical capacitors, Nat. Mater. 7 (11) (2008) 845-854.pubmed.ncbi.nlm.nih.gov/18956000/ [17] Y. Shim, H.J. Kim, Solvation of carbon nanotubes in a room-temperature ionic liquid, ACS Nano 3 (7) (2009) 1693-1702.ubmed.ncbi.nlm.nih.gov/19583191/ [18] G. Feng, R. Qiao, J.S. Huang, B.G. Sumpter, V. Meunier, Ion distribution in electrified micropores and its role in the anomalous enhancement of capacitance, ACS Nano 4 (4) (2010) 2382-2390.pubmed.ncbi.nlm.nih.gov/20364850/ [19] M. Sevilla, A.B. Fuertes, Direct synthesis of highly porous interconnected carbon nanosheets and their application as high-performance supercapacitors, ACS Nano 8 (5) (2014) 5069-5078.pubmed.ncbi.nlm.nih.gov/24731137/ [20] N. Jung, S. Kwon, D. Lee, D.M. Yoon, Y.M. Park, A. Benayad, J.Y. Choi, J.S. Park, Synthesis of chemically bonded graphene/carbon nanotube composites and their application in large volumetric capacitance supercapacitors, Adv. Mater. 25 (47) (2013) 6854-6858.Doi:10.1002/adma.201302788 [21] C. Zhong, Y.D. Deng, W.B. Hu, J.L. Qiao, L. Zhang, J.J. Zhang, A review of electrolyte materials and compositions for electrochemical supercapacitors, Chem. Soc. Rev. 44 (21) (2015) 7484-7539.pubmed.ncbi.nlm.nih.gov/26050756/ [22] A. Burke, M. Miller, The power capability of ultracapacitors and lithium batteries for electric and hybrid vehicle applications, J. Power Sources 196 (1) (2011) 514-522.Doi:10.1016/j.jpowsour.2010.06.092 [23] D.S. Hall, J. Self, J.R. Dahn, Dielectric constants for quantum chemistry and Li-ion batteries:Solvent blends of ethylene carbonate and ethyl methyl carbonate, J. Phys. Chem. C 119 (39) (2015) 22322-22330.Doi:10.1021/acs.jpcc.5b06022 [24] A. Jänes, E. Lust, Use of organic esters as co-solvents for electrical double layer capacitors with low temperature performance, J. Electroanal. Chem. 588 (2) (2006) 285-295.Doi:10.1016/j.jelechem.2006.01.003 [25] K. Xu, Electrolytes and interphases in Li-ion batteries and beyond, Chem. Rev. 114 (23) (2014) 11503-11618.pubmed.ncbi.nlm.nih.gov/25351820/ [26] B.E. Conway, W.G. Pell, Power limitations of supercapacitor operation associated with resistance and capacitance distribution in porous electrode devices, J. Power Sources 105 (2) (2002) 169-81.Doi:10.1016/S0378-7753(01)00936-3 [27] M. Kaus, J. Kowal, D.U. Sauer, Modelling the effects of charge redistribution during self-discharge of supercapacitors, Electrochimica Acta 55 (25) (2010) 7516-7523.Doi:10.1016/j.electacta.2010.01.002 [28] L. Yang, B.H. Fishbine, A. Migliori, L.R. Pratt, Molecular simulation of electric double-layer capacitors based on carbon nanotube forests, J. Am. Chem. Soc. 131 (34) (2009) 12373-12376.pubmed.ncbi.nlm.nih.gov/19655756/ [29] H.N. Wang, L. Pilon, Physical interpretation of cyclic voltammetry for measuring electric double layer capacitances, Electrochimica Acta 64 (2012) 130-139.Doi:10.1016/j.electacta.2011.12.118 [30] H. Lu, J. Zhou, G. Ye, X. Zhou, Recent advances in continuous models of electrochemical supercapacitors, J. Electrochem. 24 (2018) 517-528 [31] H.N. Wang, J. Fang, L. Pilon, Scaling laws for carbon-based electric double layer capacitors, Electrochimica Acta 109 (2013) 316-321.Doi:10.1016/j.electacta.2013.07.044 [32] H.N. Wang, L. Pilon, Accurate simulations of electric double layer capacitance of ultramicroelectrodes, J. Phys. Chem. C 115 (33) (2011) 16711-16719.Doi:10.1021/jp204498e [33] J.S. Huang, R. Qiao, B.G. Sumpter, V. Meunier, Effect of diffuse layer and pore shapes in mesoporous carbon supercapacitors, J. Mater. Res. 25 (8) (2010) 1469-1475.Doi:10.1557/jmr.2010.0188 [34] H.N. Wang, J. Varghese, L. Pilon, Simulation of electric double layer capacitors with mesoporous electrodes:Effects of morphology and electrolyte permittivity, Electrochimica Acta 56 (17) (2011) 6189-6197.http://dx.Doi:10.1016/j.electacta.2011.03.140 [35] I.N. Daniels, Z.X. Wang, B.B. Laird, Dielectric properties of organic solvents in an electric field, J. Phys. Chem. C 121 (2) (2017) 1025-1031.Doi:10.1021/acs.jpcc.6b10896 [36] H. Lu, Y. Chen, J. Zhou, Z. Sui, X. Zhou, Simulation and optimization of electrochemical double layer capacitors:Effects of ion size and diffusion coefficient, CIESC J. 70 (2019) 4021-4031.(in Chinese) [37] M.Z. Bazant, M.S. Kilic, B.D. Storey, A. Ajdari, Towards an understanding of induced-charge electrokinetics at large applied voltages in concentrated solutions, Adv. Colloid Interface Sci. 152 (1-2) (2009) 48-88.pubmed.ncbi.nlm.nih.gov/19879552/ [38] J. Dzubiella, J.P. Hansen, Electric-field-controlled water and ion permeation of a hydrophobic nanopore, J. Chem. Phys. 122 (23) (2005) 234706.Doi:10.1063/1.1927514 [39] S. Senapati, A. Chandra, Dielectric constant of water confined in a nanocavity, J. Phys. Chem. B 105 (22) (2001) 5106-5109.Doi:10.1021/jp011058i [40] J.J. Bikerman, XXXIX. Structure and capacity of electrical double layer, Lond. Edinb. Dublin Philos. Mag. J. Sci. 33 (220) (1942) 384-397.Doi:10.1080/14786444208520813 [41] M.S. Kilic, M.Z. Bazant, A. Ajdari, Steric effects in the dynamics of electrolytes at large applied voltages. II. Modified Poisson-Nernst-Planck equations, Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75 (2 Pt 1) (2007) 021503.pubmed.ncbi.nlm.nih.gov/17358344/ [42] H.N. Wang, L. Pilon, Mesoscale modeling of electric double layer capacitors with three-dimensional ordered structures, J. Power Sources 221 (2013) 252-260.Doi:10.1016/j.jpowsour.2012.08.002 [43] J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon, P.L. Taberna, Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer, Science 313 (5794) (2006) 1760-1763.Doi:10.1126/science.1132195 [44] E. Stura, C. Nicolini, New nanomaterials for light weight lithium batteries, Anal. Chimica Acta 568 (1-2) (2006) 57-64.Doi:10.1016/j.aca.2005.11.025 [45] D. J. Griffiths, Introduction to Electrodynamics, Cambridge University Press, Cambridge, 2017 [46] P. Ratajczak, M.E. Suss, F. Kaasik, F. Béguin, Carbon electrodes for capacitive technologies, Energy Storage Mater. 16 (2019) 126-145.Doi:10.1016/j.ensm.2018.04.031 [47] E. Frackowiak, F. Béguin, Carbon materials for the electrochemical storage of energy in capacitors, Carbon 39 (6) (2001) 937-950.Doi:10.1016/S0008-6223(00)00183-4 [48] C. Vix-Guterl, E. Frackowiak, K. Jurewicz, M. Friebe, J. Parmentier, F. Béguin, Electrochemical energy storage in ordered porous carbon materials, Carbon 43 (6) (2005) 1293-1302.Doi:10.1016/j.carbon.2004.12.028 [49] M. Arulepp, L. Permann, J. Leis, A. Perkson, K. Rumma, A. Jänes, E. Lust, Influence of the solvent properties on the characteristics of a double layer capacitor, J. Power Sources 133 (2) (2004) 320-328.Doi:10.1016/j.jpowsour.2004.03.026 [50] D.E. Jiang, J.Z. Wu, Unusual effects of solvent polarity on capacitance for organic electrolytes in a nanoporous electrode, Nanoscale 6 (10) (2014) 5545-5550.Doi:10.1039/c4nr00046c [51] S. Zhang, Z. Bo, H.C. Yang, J.Y. Yang, L.P. Duan, J.H. Yan, K.F. Cen, Insights into the effects of solvent properties in graphene based electric double-layer capacitors with organic electrolytes, J. Power Sources 334 (2016) 162-169.Doi:10.1016/j.jpowsour.2016.10.021 [52] H.C. Yang, J.Y. Yang, Z. Bo, X. Chen, X.R. Shuai, J. Kong, J.H. Yan, K.F. Cen, Kinetic-dominated charging mechanism within representative aqueous electrolyte-based electric double-layer capacitors, J. Phys. Chem. Lett. 8 (15) (2017) 3703-3710.Doi:10.1021/acs.jpclett.7b01525 [53] Y.B. Band, Y. Ben-Shimol, Molecules with an induced dipole moment in a stochastic electric field, Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 88 (4) (2013) 042149.pubmed.ncbi.nlm.nih.gov/24229157/ [54] L. Onsager, Electric moments of molecules in liquids, J. Am. Chem. Soc. 58 (8) (1936) 1486-1493.Doi:10.1021/ja01299a050 [55] I. Yang, S.G. Kim, S.H. Kwon, M.S. Kim, J.C. Jung, Relationships between pore size and charge transfer resistance of carbon aerogels for organic electric double-layer capacitor electrodes, Electrochimica Acta 223 (2017) 21-30.Doi:10.1016/j.electacta.2016.11.177 [56] I. Yang, S.G. Kim, S.H. Kwon, J.H. Lee, M.S. Kim, J.C. Jung, Pore size-controlled carbon aerogels for EDLC electrodes in organic electrolytes, Curr. Appl. Phys. 16 (6) (2016) 665-672.Doi:10.1016/j.cap.2016.03.019 |