[1] C.H.C. Zhou, J.N. Beltramini, Y.X. Fan, G.Q.M. Lu, Chemoselective catalytic conversion of glycerol as a biorenewable source to valuable commodity chemicals, Chem. Soc. Rev. 37 (3) (2008) 527-549 [2] P.U. Okoye, A.Z. Abdullah, B.H. Hameed, A review on recent developments and progress in the kinetics and deactivation of catalytic acetylation of glycerol-A byproduct of biodiesel, Renew. Sustain. Energy Rev. 74 (2017) 387-401 [3] N. Benipal, J. Qi, Q. Liu, W.Z. Li, Carbon nanotube supported PdAg nanoparticles for electrocatalytic oxidation of glycerol in anion exchange membrane fuel cells, Appl. Catal. B:Environ. 210 (2017) 121-130 [4] R.C. Tao, R.E. Kelley, N.N. Yoshimura, F. Benjamin, Glycerol:its metabolism and use as an intravenous energy source, J. Parenter. Enter. Nutr. 7 (5) (1983) 479-488 [5] L. Bui, H. Luo, W.R. Gunther, Y. Román-Leshkov, Domino reaction catalyzed by zeolites with brønsted and lewis acid sites for the production of γ-valerolactone from furfural, Angew. Chem. 125 (31) (2013) 8180-8183 [6] J. Wang, X.C. Zhao, N. Lei, L. Li, L.L. Zhang, S.T. Xu, S. Miao, X.L. Pan, A.Q. Wang, T. Zhang, Hydrogenolysis of glycerol to 1, 3-propanediol under low hydrogen pressure over WOx -supported single/pseudo-single atom Pt catalyst, ChemSusChem 9 (8) (2016) 784-790 [7] Y.Q. Fan, S.J. Cheng, H. Wang, J. Tian, S.H. Xie, Y. Pei, M.H. Qiao, B.N. Zong, Pt-WOx on monoclinic or tetrahedral ZrO2:Crystal phase effect of zirconia on glycerol hydrogenolysis to 1, 3-propanediol, Appl. Catal. B:Environ. 217 (2017) 331-341 [8] Y. Kusunoki, T. Miyazawa, K. Kunimori, K. Tomishige, Highly active metal-acid bifunctional catalyst system for hydrogenolysis of glycerol under mild reaction conditions, Catal. Commun. 6 (10) (2005) 645-649 [9] S. García-Fernández, I. Gandarias, J. Requies, F. Soulimani, P.L. Arias, B.M. Weckhuysen, The role of tungsten oxide in the selective hydrogenolysis of glycerol to 1, 3-propanediol over Pt/WOx/Al2O3, Appl. Catal. B:Environ. 204 (2017) 260-272 [10] L.Z. Qin, M.J. Song, C.L. Chen, Aqueous-phase deoxygenation of glycerol to 1, 3-propanediol over Pt/WO3/ZrO2 catalysts in a fixed-bed reactor, Green Chem. 12 (8) (2010) 1466 [11] S. Carlier, J. Gripekoven, M. Philippo, S. Hermans, Ru on N-doped carbon supports for the direct hydrogenation of cellobiose into sorbitol, Appl. Catal. B:Environ. 282 (2021) 119515 [12] A.V.H. Soares, J.B. Salazar, D.D. Falcone, F.A. Vasconcellos, R.J. Davis, F.B. Passos, A study of glycerol hydrogenolysis over Ru-Cu/Al2O3 and Ru-Cu/ZrO2 catalysts, J. Mol. Catal. A:Chem. 415 (2016) 27-36 [13] Y. Nakagawa, K. Tomishige, Heterogeneous catalysis of the glycerol hydrogenolysis, Catal. Sci. Technol. 1 (2) (2011) 179 [14] T. Miyazawa, S. Koso, K. Kunimori, K. Tomishige, Glycerol hydrogenolysis to 1, 2-propanediol catalyzed by a heat-resistant ion-exchange resin combined with Ru/C, Appl. Catal. A:Gen. 329 (2007) 30-35 [15] L. Ma, D.H. He, Influence of catalyst pretreatment on catalytic properties and performances of Ru-Re/SiO2 in glycerol hydrogenolysis to propanediols, Catal. Today 149 (1-2) (2010) 148-156 [16] Z.J. Wu, M. Zhang, Y.R. Yao, J.T. Wang, D.H. Wang, M.H. Zhang, Y.F. Li, One-pot catalytic production of 1, 3-propanediol and γ-valerolactone from glycerol and levulinic acid, Catal. Today 302 (2018) 217-226 [17] G.X. Cai, S.S. Zhou, F. Hao, W. Xiong, P.L. Liu, Carbon nanotubes supported Ru-Mo bimetallic catalyst and the performance in liquid phase hydrogenation of glycerol with phosphotungstic acid, Catal. Lett. 151 (7) (2021) 2075-2087 [18] S.H. Zhu, Y.L. Zhu, S.L. Hao, L.G. Chen, B. Zhang, Y.W. Li, Aqueous-phase hydrogenolysis of glycerol to 1, 3-propanediol over Pt-H4SiW12O40/SiO2, Catal. Lett. 142 (2) (2012) 267-274 [19] J.B. Salazar, D.D. Falcone, H.N. Pham, A.K. Datye, F.B. Passos, R.J. Davis, Selective production of 1, 2-propanediol by hydrogenolysis of glycerol over bimetallic Ru-Cu nanoparticles supported on TiO2, Appl. Catal. A:Gen. 482 (2014) 137-144 [20] X.Y. Liao, K.W. Li, X.M. Xiang, S.G. Wang, X.C. She, Y.L. Zhu, Y.W. Li, Mediatory role of K, Cu and Mo over Ru/SiO2 catalysts for glycerol hydrogenolysis, J. Ind. Eng. Chem. 18 (2) (2012) 818-821 [21] B.D. Li, J. Wang, Y.Z. Yuan, H. Ariga, S. Takakusagi, K. Asakura, Carbon nanotube-supported RuFe bimetallic nanoparticles as efficient and robust catalysts for aqueous-phase selective hydrogenolysis of glycerol to glycols, ACS Catal. 1 (11) (2011) 1521-1528 [22] J. Kim, D. Lee, Glycerol steam reforming on supported Ru-based catalysts for hydrogen production for fuel cells, Int. J. Hydrog. Energy 38 (27) (2013) 11853-11862 [23] J.J. Varghese, L.W. Cao, C. Robertson, Y.H. Yang, L.F. Gladden, A.A. Lapkin, S.H. Mushrif, Synergistic contribution of the acidic metal oxide-metal couple and solvent environment in the selective hydrogenolysis of glycerol:a combined experimental and computational study using ReOx-Ir as the catalyst, ACS Catal. 9 (1) (2019) 485-503 [24] T. Hirai, N.O. Ikenaga, T. Miyake, T. Suzuki, Production of hydrogen by steam reforming of glycerin on ruthenium catalyst, Energy Fuels 19 (4) (2005) 1761-1762 [25] V. Zacharopoulou, E.S. Vasiliadou, A.A. Lemonidou, Exploring the reaction pathways of bioglycerol hydrodeoxygenation to propene over molybdena-based catalysts, ChemSusChem 11 (1) (2018) 264-275 [26] W.M. Wan, S.C. Ammal, Z.X. Lin, K.E. You, A. Heyden, J.G. Chen, Controlling reaction pathways of selective C-O bond cleavage of glycerol, Nat Commun 9 (1) (2018) 4612 [27] W.T. Yu, M. Salciccioli, K. Xiong, M.A. Barteau, D.G. Vlachos, J.G. Chen, Theoretical and experimental studies of C-C versus C-O bond scission of ethylene glycol reaction pathways via metal-modified molybdenum carbides, ACS Catal. 4 (5) (2014) 1409-1418 [28] K. Murugappan, E.M. Anderson, D. Teschner, T.E. Jones, K. Skorupska, Y. Román-Leshkov, Operando NAP-XPS unveils differences in MoO3 and Mo2C during hydrodeoxygenation, Nat. Catal. 1 (12) (2018) 960-967 [29] K. Taylor, Determination of ruthenium surface areas by hydrogen and oxygen chemisorption, J. Catal. 38 (1-3) (1975) 299-306 [30] Y.L. Ning, S.L. Niu, K.H. Han, C.M. Lu, Catalytic capability of phosphotungstic acid supported on bamboo activated carbon in esterification for biodiesel production with density functional theory, Biomass Bioenergy 143 (2020) 105873 [31] X.Y. Jiang, Z.Y. Zhang, M.H. Sun, W.Z. Liu, J.D. Huang, H.Y. Xu, Self-assembly of highly-dispersed phosphotungstic acid clusters onto graphitic carbon nitride nanosheets as fascinating molecular-scale Z-scheme heterojunctions for photocatalytic solar-to-fuels conversion, Appl. Catal. B:Environ. 281 (2021) 119473 [32] Z.K. Zhao, X.H. Wang, Supported phosphotungstic acid catalyst on modified activated carbon for Friedel-Crafts alkenylation of diverse aromatics to their corresponding α-arylstyrenes, Appl. Catal. A:Gen. 503 (2015) 103-110 [33] J. Alcañiz-Monge, G. Trautwein, J.P. Marco-Lozar, Biodiesel production by acid catalysis with heteropolyacids supported on activated carbon fibers, Appl. Catal. A:Gen. 468 (2013) 432-441 [34] T. Obalı, T. Doğu, Activated carbon-tungstophosphoric acid catalysts for the synthesis of tert-amyl ethyl ether (TAEE), Chem. Eng. J. 138 (1-3) (2008) 548-555 [35] N. Lopes da Costa, L. Guedes Pereira, J.V. Mendes Resende, C.A. Diaz Mendoza, K. Kaiser Ferreira, C. Detoni, M. M V M Souza, F. N D C Gomes, Phosphotungstic acid on activated carbon:a remarkable catalyst for 5-hydroxymethylfurfural production, Mol. Catal. 500 (2021) 111334 [36] A.M. Alsalme, P.V. Wiper, Y.Z. Khimyak, E.F. Kozhevnikova, I.V. Kozhevnikov, Solid acid catalysts based on H3PW12O40 heteropoly acid:Acid and catalytic properties at a gas-solid interface, J. Catal. 276 (1) (2010) 181-189 [37] J.X. Guo, J. Liang, Y.H. Chu, M.C. Sun, H.Q. Yin, J.J. Li, Desulfurization activity of nickel supported on acid-treated activated carbons, Appl. Catal. A:Gen. 421-422 (2012) 142-147 [38] E. Gallegos-Suarez, M. Pérez-Cadenas, A. Guerrero-Ruiz, I. Rodriguez-Ramos, A. Arcoya, Effect of the functional groups of carbon on the surface and catalytic properties of Ru/C catalysts for hydrogenolysis of glycerol, Appl. Surf. Sci. 287 (2013) 108-116 [39] M.P. Wang, H.M. Yang, Y.Z. Xie, X.H. Wu, C. Chen, W.B. Ma, Q.F. Dong, Z.S. Hou, Catalytic transformation of glycerol to 1-propanol by combining zirconium phosphate and supported Ru catalysts, RSC Adv. 6 (35) (2016) 29769-29778 [40] F. Auneau, C. Michel, F. Delbecq, C. Pinel, P. Sautet, Unravelling the mechanism of glycerol hydrogenolysis over rhodium catalyst through combined experimental-theoretical investigations, Chem. Eur. J. 17 (50) (2011) 14288-14299 [41] S.S. Priya, V.P. Kumar, M.L. Kantam, S.K. Bhargava, A. Srikanth, K.V.R. Chary, High efficiency conversion of glycerol to 1, 3-propanediol using a novel platinum-tungsten catalyst supported on SBA-15, Ind. Eng. Chem. Res. 54 (37) (2015) 9104-9115 [42] M. Balaraju, V. Rekha, P.S.S. Prasad, B.L.A.P. Devi, R.B.N. Prasad, N. Lingaiah, Influence of solid acids as co-catalysts on glycerol hydrogenolysis to propylene glycol over Ru/C catalysts, Appl. Catal. A:Gen. 354 (1-2) (2009) 82-87 [43] Zhang B, Sun G, Ding S, Asakura H, Zhang J, Sautet P, Yan N, Atomically dispersed Pt1-polyoxometalate catalysts:how does metal-support interaction affect stability and hydrogenation activity? J Am Chem Soc 141 (20) (2019) 8185-8197 [44] J.L. Fu, K.X. Yang, C.J. Ma, N. Zhang, H.J. Gai, J.B. Zheng, B.H. Chen, Bimetallic Ru-Cu as a highly active, selective and stable catalyst for catalytic wet oxidation of aqueous ammonia to nitrogen, Appl. Catal. B:Environ. 184 (2016) 216-222 [45] K. Baranowska, J. Okal, Bimetallic Ru-Re/γ-Al2O3 catalysts for the catalytic combustion of propane:Effect of the Re addition, Appl. Catal. A:Gen. 499 (2015) 158-167 [46] J. Okal, M. Zawadzki, W. Tylus, Microstructure characterization and propane oxidation over supported Ru nanoparticles synthesized by the microwave-polyol method, Appl. Catal. B:Environ. 101 (3-4) (2011) 548-559 [47] Y.L. Leung, P.C. Wong, K.A.R. Mitchell, K.J. Smith, X-ray photoelectron spectroscopy studies of the reduction of MoO3 thin films by NH3, Appl. Surf. Sci. 136 (1-2) (1998) 147-158 [48] D. Yun, Y.S. Yun, T.Y. Kim, H. Park, J.M. Lee, J.W. Han, J. Yi, Mechanistic study of glycerol dehydration on Brønsted acidic amorphous aluminosilicate, J. Catal. 341 (2016) 33-43 [49] F. Sun, L.G. Chen, Y.J. Weng, T.J. Wang, S.B. Qiu, Q.X. Li, C.G. Wang, Q. Zhang, L.L. Ma, Transformation of biomass polyol into hydrocarbon fuels in aqueous medium over Ru-Mo/CNT catalyst, Catal. Commun. 99 (2017) 30-33 [50] R. Mane, S. Patil, M. Shirai, S. Rayalu, C. Rode, Influence of carbon based supports on selectivity behavior of diols and propanol in Ru catalyzed glycerol hydrogenolysis, Appl. Catal. B:Environ. 204 (2017) 134-146 [51] Y. Wang, Y. Xiao, G.M. Xiao, Sustainable value-added C3 chemicals from glycerol transformations:a mini review for heterogeneous catalytic processes, Chin. J. Chem. Eng. 27 (7) (2019) 1536-1542 [52] Y. Shinmi, S. Koso, T. Kubota, Y. Nakagawa, K. Tomishige, Modification of Rh/SiO2 catalyst for the hydrogenolysis of glycerol in water, Appl. Catal. B:Environ. 94 (3-4) (2010) 318-326 [53] K.M. Dong, X.M. Wu, G.D. Lin, H.Y. Zhang, Mo-Co catalyst supported on multi-walled carbon nanotubes for hydrodesulfurization of thiophene, Chinese J. Catal. 26 (2005) 550-556 [54] L.G. Chen, Y.L. Zhu, H.Y. Zheng, C.H. Zhang, Y.W. Li, Aqueous-phase hydrodeoxygenation of propanoic acid over the Ru/ZrO2 and Ru-Mo/ZrO2 catalysts, Appl. Catal. A:Gen. 411-412 (2012) 95-104 [55] W.T. Luo, Y. Lyu, L.F. Gong, H. Du, M. Jiang, Y.J. Ding, Alcohol-treated SiO2 as the support of Ir-Re/SiO2 catalysts for glycerol hydrogenolysis, Chin. J. Catal. 37 (11) (2016) 2009-2017 [56] N. Boufaden, R. Akkari, B. Pawelec, J.L.G. Fierro, M.S. Zina, A. Ghorbel, Dehydrogenation of methylcyclohexane to toluene over partially reduced silica-supported Pt-Mo catalysts, J. Mol. Catal. A:Chem. 420 (2016) 96-106 [57] C.E. Scott, P. Betancourt, M.J. Pérez Zurita, C. Bolı?var, J. Goldwasser, A study of Ru-Mo/Al2O3 catalysts, Appl. Catal. A:Gen. 197 (1) (2000) 23-29. [58] S. Koso, H. Watanabe, K. Okumura, Y. Nakagawa, K. Tomishige, Comparative study of Rh-MoOx and Rh-ReOx supported on SiO2 for the hydrogenolysis of ethers and polyols, Appl. Catal. B:Environ. 111-112 (2012) 27-37 [59] P. Koopman, Characterization of ruthenium catalysts as studied by temperature programmed reduction, J. Catal. 69 (1) (1981) 172-179 [60] A.S. Nagpure, A.K. Venugopal, N. Lucas, M. Manikandan, R. Thirumalaiswamy, S. Chilukuri, Renewable fuels from biomass-derived compounds:Ru-containing hydrotalcites as catalysts for conversion of HMF to 2, 5-dimethylfuran, Catal. Sci. Technol. 5 (3) (2015) 1463-1472 [61] S.Z. Zheng, X.Y. Cao, Q. Zhou, S.H. Wang, G.S. Hu, J.Q. Lu, M.F. Luo, Y.J. Wang, Gas phase hydrogenolysis of methyl difluoroacetate to 1, 1-difluoroethanol over Ru/C catalysts, J. Fluor. Chem. 145 (2013) 132-135 [62] I. Rossetti, N. Pernicone, L. Forni, Characterisation of Ru/C catalysts for ammonia synthesis by oxygen chemisorption, Appl. Catal. A:Gen. 248 (1-2) (2003) 97-103 [63] H.F. Cheng, M.C. Wen, X.C. Ma, Y. Kuwahara, K. Mori, Y. Dai, B.B. Huang, H. Yamashita, Hydrogen doped metal oxide semiconductors with exceptional and tunable localized surface plasmon resonances, J Am Chem Soc 138 (29) (2016) 9316-9324 [64] H.C. Foley, A.J. Hong, J.S. Brinen, L.F. Allard, A.J. Garratt-Reed, Bimetallic catalysts comprised of dissimilar metals for the reduction of carbon monoxide with hydrogen, Appl. Catal. 61 (1) (1990) 351-375 [65] T. Prasomsri, T. Nimmanwudipong, Y. Román-Leshkov, Effective hydrodeoxygenation of biomass-derived oxygenates into unsaturated hydrocarbons by MoO3 using low H2 pressures, Energy Environ. Sci. 6 (6) (2013) 1732 [66] P. Reyes, C. Rodríguez, G. Pecchi, J.L.G. Fierro, Promoting effect of Mo on the selective hydrogenation of cinnamaldehyde on Rh/SiO2 catalysts, Catal. Lett. 69 (1-2) (2000) 27-32 [67] X.J. Cui, J. Xu, C.H. Zhang, Y. Yang, P. Gao, B.S. Wu, Y.W. Li, Effect of pretreatment on precipitated Fe-Mo Fischer-Tropsch catalysts:Morphology, carburization, and catalytic performance, J. Catal. 282 (1) (2011) 35-46 [68] J.L. Cui, J.J. Tan, Y.L. Zhu, F.Q. Cheng, Aqueous hydrogenation of levulinic acid to 1, 4-pentanediol over Mo-modified Ru/activated carbon catalyst, ChemSusChem 11 (8) (2018) 1316-1320 [69] S.H. Choi, J.S. Lee, XAFS characterization of Pt-Mo bimetallic catalysts for CO hydrogenation, J. Catal. 167 (2) (1997) 364-371 [70] G. Leclercq, A. Elgharbi, S. Pietrzyk, Bimetallic Catalysts.V. kinetics of the hydrogenolysis of butane over Pt-Mo/SiO2 catalysts, J. Catal. 144 (1) (1993) 118-130 [71] G. Leclercq, T. Romero, S. Pietrzyk, J. Grimblot, L. Leclercq, Properties of platinum-molybdenum bimetallic catalysts deposited on silica, J. Mol. Catal. 25 (1-3) (1984) 67-86 [72] Y.C. Shi, Y.Y. Cao, Y.N. Duan, H. Chen, Y. Chen, M.D. Yang, Y.L. Wu, Upgrading of palmitic acid to iso-alkanes over bi-functional Mo/ZSM-22 catalysts, Green Chem. 18 (17) (2016) 4633-4648 [73] E. Ryneveld, A.S. Mahomed, P.S. Heerden, H.B. Friedrich, Direct hydrogenolysis of highly concentrated glycerol solutions over supported ru, Pd and Pt catalyst systems, Catal. Lett. 141 (7) (2011) 958-967 [74] K. Tomishige, Y. Nakagawa, M. Tamura, Selective hydrogenolysis and hydrogenation using metal catalysts directly modified with metal oxide species, Green Chem. 19 (13) (2017) 2876-2924 [75] M.G. Samant, G. Bergeret, G. Meitzner, P. Gallezot, M. Boudart, Anomalous wide-angle X-ray scattering and X-ray absorption spectroscopy of supported platinum-molybdenum bimetallic clusters. 2. Atomic and electronic structure, J. Phys. Chem. 92 (12) (1988) 3547-3554 [76] I. Gandarias, P.L. Arias, S.G. Fernández, J. Requies, M. El Doukkali, M.B. Güemez, Hydrogenolysis through catalytic transfer hydrogenation:Glycerol conversion to 1, 2-propanediol, Catal. Today 195 (1) (2012) 22-31 [77] I. Gandarias, P.L. Arias, J. Requies, M. El Doukkali, M.B. Güemez, Liquid-phase glycerol hydrogenolysis to 1, 2-propanediol under nitrogen pressure using 2-propanol as hydrogen source, J. Catal. 282 (1) (2011) 237-247 [78] D.L. Sun, Y. Yamada, S. Sato, W. Ueda, Glycerol hydrogenolysis into useful C3 chemicals, Appl. Catal. B:Environ. 193 (2016) 75-92 [79] E.P. Maris, R.J. Davis, Hydrogenolysis of glycerol over carbon-supported Ru and Pt catalysts, J. Catal. 249 (2) (2007) 328-337 [80] S.S. Priya, P. Bhanuchander, V.P. Kumar, D.K. Dumbre, S.R. Periasamy, S.K. Bhargava, M. Lakshmi Kantam, K.V.R. Chary, Platinum supported on H-mordenite:a highly efficient catalyst for selective hydrogenolysis of glycerol to 1, 3-propanediol, ACS Sustainable Chem. Eng. 4 (3) (2016) 1212-1222 [81] L.J. Liu, S. Kawakami, Y. Nakagawa, M. Tamura, K. Tomishige, Highly active iridium-rhenium catalyst condensed on silica support for hydrogenolysis of glycerol to 1, 3-propanediol, Appl. Catal. B:Environ. 256 (2019) 117775 [82] L.F. Gong, Y. Lu, Y.J. Ding, R.H. Lin, J.W. Li, W.D. Dong, T. Wang, W.M. Chen, Selective hydrogenolysis of glycerol to 1, 3-propanediol over a Pt/WO3/TiO2/SiO2 catalyst in aqueous media, Appl. Catal. A:Gen. 390 (1-2) (2010) 119-126 [83] J. Oh, S. Dash, H. Lee, Selective conversion of glycerol to 1, 3-propanediol using Pt-sulfated zirconia, Green Chem. 13 (8) (2011) 2004 [84] R. Arundhathi, T. Mizugaki, T. Mitsudome, K. Jitsukawa, K. Kaneda, Highly selective hydrogenolysis of glycerol to 1, 3-propanediol over a boehmite-supported platinum/tungsten catalyst, ChemSusChem 6 (8) (2013) 1345-1347 |