[1] A.F. Hassan, H. Elhadidy, Effect of Zr+4 doping on characteristics and sonocatalytic activity of TiO2/carbon nanotubes composite catalyst for degradation of chlorpyrifos, J. Phys. Chem. Solids 129 (2019) 180-187. http://dx.doi.org/10.1016/j.jpcs.2019.01.018 [2] S. Sajjadi, A. Khataee, R. Darvishi Cheshmeh Soltani, A. Hasanzadeh, N, S co-doped graphene quantum dot-decorated Fe3O4 nanostructures:Preparation, characterization and catalytic activity, J. Phys. Chem. Solids 127 (2019) 140-150. [3] C.Q. Lin, W. Wei, Y.H. Hu, Catalytic behavior of graphene oxide for cement hydration process, J. Phys. Chem. Solids 89 (2016) 128-133. http://dx.doi.org/10.1016/j.jpcs.2015.11.002 [4] K.J. Chen, W.J. Fan, C.J. Huang, X.Q. Qiu, Enhanced stability and catalytic activity of bismuth nanoparticles by modified with porous silica, J. Phys. Chem. Solids 110 (2017) 9-14. http://dx.doi.org/10.1016/j.jpcs.2017.05.025 [5] P. Avouris, C. Dimitrakopoulos, Graphene:Synthesis and applications, Mater. Today 15 (3) (2012) 86-97. http://dx.doi.org/10.1016/S1369-7021(12)70044-5 [6] D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z.Z. Sun, A.S. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, Correction to improved synthesis of graphene oxide, ACS Nano 12 (2) (2018) 2078. https://www.ncbi.nlm.nih.gov/pubmed/29328621/ [7] H.W. Zhu, C.L. Xu, D.H. Wu, B.Q. Wei, R. Vajtai, P.M. Ajayan, Direct synthesis of long single-walled carbon nanotube strands, Science 296 (5569) (2002) 884-886. https://www.ncbi.nlm.nih.gov/pubmed/11988567/ [8] H.C. Kuan, C.C.M. Ma, W.P. Chang, S.M. Yuen, H.H. Wu, T.M. Lee, Synthesis, thermal, mechanical and rheological properties of multiwall carbon nanotube/waterborne polyurethane nanocomposite, Compos. Sci. Technol. 65 (11-12) (2005) 1703-1710. http://dx.doi.org/10.1016/j.compscitech.2005.02.017 [9] R. Wang, K.Q. Lu, Z.R. Tang, Y.J. Xu, Recent progress in carbon quantum dots:Synthesis, properties and applications in photocatalysis, J. Mater. Chem. A 5 (8) (2017) 3717-3734. https://doi.org/10.1039/c6ta08660h [10] Y.G. Ko, U.S. Choi, J.S. Kim, Y.S. Park, Novel synthesis and characterization of activated carbon fiber and dye adsorption modeling, Carbon 40 (14) (2002) 2661-2672. http://dx.doi.org/10.1016/S0008-6223(02)00168-9 [11] M. Terrones, A.R. Botello-Méndez, J. Campos-Delgado, F. López-Urías, Y.I. Vega-Cantú, F.J. Rodríguez-Macías, A.L. Elías, E. Muñoz-Sandoval, A.G. Cano-Márquez, J.C. Charlier, H. Terrones, Graphene and graphite nanoribbons:Morphology, properties, synthesis, defects and applications, Nano Today 5 (4) (2010) 351-372. http://dx.doi.org/10.1016/j.nantod.2010.06.010 [12] C.D. Liang, Z.J. Li, S. Dai, Mesoporous carbon materials:Synthesis and modification, Angew Chem Int Ed Engl 47 (20) (2008) 3696-3717. https://www.ncbi.nlm.nih.gov/pubmed/18350530/ [13] F. Wudl, Fullerene materials, J. Mater. Chem. 12 (7) (2002) 1959-1963. https://doi.org/10.1039/b201196d [14] Y. Li, J. Qi, J. Li, J. Shen, Y. Liu, X. Sun, J. Shen, W. Han, L. Wang, Nitrogen-doped hollow mesoporous carbon spheres for efficient water desalination by capacitive deionization, ACS Sustain. Chem. Eng. 5 (2017) 6635-6644 [15] J. Liu, N.P. Wickramaratne, S.Z. Qiao, M. Jaroniec, Molecular-based design and emerging applications of nanoporous carbon spheres, Nat Mater 14 (8) (2015) 763-774. https://www.ncbi.nlm.nih.gov/pubmed/26201892/ [16] L.M. Guo, X.Z. Cui, Y.S. Li, Q.J. He, L.X. Zhang, W.B. Bu, J.L. Shi, Hollow mesoporous carbon spheres with magnetic cores and their performance as separable bilirubin adsorbents, Chem Asian J 4 (9) (2009) 1480-1485. https://www.ncbi.nlm.nih.gov/pubmed/19582733/ [17] L.M. Guo, L.X. Zhang, J.M. Zhang, J. Zhou, Q.J. He, S.Z. Zeng, X.Z. Cui, J.L. Shi, Hollow mesoporous carbon spheres:An excellent bilirubin adsorbent, Chem Commun (Camb) (40) (2009) 6071-6073. https://www.ncbi.nlm.nih.gov/pubmed/19809647/ [18] F.P. Hu, Z.Y. Wang, Y.L. Li, C.M. Li, X. Zhang, P.K. Shen, Improved performance of Pd electrocatalyst supported on ultrahigh surface area hollow carbon spheres for direct alcohol fuel cells, J. Power Sources 177 (1) (2008) 61-66. http://dx.doi.org/10.1016/j.jpowsour.2007.11.024 [19] S.B. Yang, X.L. Feng, L.J. Zhi, Q. Cao, J. Maier, K. Müllen, Nanographene-constructed hollow carbon spheres and their favorable electroactivity with respect to lithium storage, Adv Mater 22 (7) (2010) 838-842. https://www.ncbi.nlm.nih.gov/pubmed/20217794/ [20] J.P. Han, G.Y. Xu, B. Ding, J. Pan, H. Dou, D.R. MacFarlane, Porous nitrogen-doped hollow carbon spheres derived from polyaniline for high performance supercapacitors, J. Mater. Chem. A 2 (15) (2014) 5352-5357. https://doi.org/10.1039/c3ta15271e [21] X.H. Liu, L. Zhou, Y.Q. Zhao, L. Bian, X.T. Feng, Q.S. Pu, Hollow, spherical nitrogen-rich porous carbon shells obtained from a porous organic framework for the supercapacitor, ACS Appl Mater Interfaces 5 (20) (2013) 10280-10287. https://www.ncbi.nlm.nih.gov/pubmed/24053493/ [22] S.L. Buchwald, Cross coupling, Acc Chem Res 41 (11) (2008) 1439. https://www.ncbi.nlm.nih.gov/pubmed/19032082/ [23] L.X. Yin, J. Liebscher, Carbon-carbon coupling reactions catalyzed by heterogeneous palladium catalysts, Chem Rev 107 (1) (2007) 133-173. https://www.ncbi.nlm.nih.gov/pubmed/17212474/ [24] R.F. Heck, Palladium-catalyzed reactions of organic halides with olefins, Accounts of Chem. Res. 12 (1979) 146-151 [25] N. Miyaura, A. Suzuki, Palladium-catalyzed cross-coupling reactions of organoboron compounds, Chem. Rev. 95 (7) (1995) 2457-2483. https://doi.org/10.1021/cr00039a007 [26] I.P. Beletskaya, A.V. Cheprakov, The heck reaction as a sharpening stone of palladium catalysis, Chem. Rev. 100 (8) (2000) 3009-3066. https://doi.org/10.1021/cr9903048 [27] C.J. Welch, J. Albaneze-Walker, W.R. Leonard, M. Biba, J. DaSilva, D. Henderson, B. Laing, D.J. Mathre, S. Spencer, X.D. Bu, T.B. Wang, Adsorbent screening for metal impurity removal in pharmaceutical process research, Org. Process. Res. Dev. 9 (2) (2005) 198-205. http://dx.doi.org/10.1021/op049764f [28] C. Garrett, K. Prasad, The art of meeting palladium specifications in active pharmaceutical ingredients produced by Pd-catalyzed reactions, Adv. Synth. Catal. 346 (8) (2004) 889-900. https://doi.org/10.1002/adsc.200404071 [29] R. Narayanan, M.A. El-Sayed, Effect of catalysis on the stability of metallic nanoparticles:Suzuki reaction catalyzed by PVP-palladium nanoparticles, J. Am. Chem. Soc. 125 (27) (2003) 8340-8347. https://doi.org/10.1021/ja035044x [30] R. Narayanan, M.A. El-Sayed, Effect of colloidal catalysis on the nanoparticle size distribution:Dendrimer-Pd vs PVP-Pd nanoparticles catalyzing the suzuki coupling reaction, J. Phys. Chem. B 108 (25) (2004) 8572-8580. https://doi.org/10.1021/jp037169u [31] C.S. Duanmu, I. Saha, Y. Zheng, B.M. Goodson, Y. Gao, Dendron-functionalized superparamagnetic nanoparticles with switchable solubility in organic and aqueous media:Matrices for homogeneous catalysis and potential MRI contrast agents, Chem. Mater. 18 (25) (2006) 5973-5981. http://dx.doi.org/10.1021/cm061782j [32] R. Narayanan, C. Tabor, M.A. El-Sayed, Can the observed changes in the size or shape of a colloidal nanocatalyst reveal the nanocatalysis mechanism type:Homogeneous or heterogeneous?Top. Catal. 48 (1-4) (2008) 60-74. http://dx.doi.org/10.1007/s11244-008-9057-4 [33] P.J. Ellis, I.J. Fairlamb, S.F. Hackett, K. Wilson, A.F. Lee, Evidence for the surface-catalyzed Suzuki-Miyaura reaction over palladium nanoparticles:An operando XAS study, Angew Chem Int Ed Engl 49 (10) (2010) 1820-1824. https://www.ncbi.nlm.nih.gov/pubmed/20127926/ [34] B.M. Bhanage, M. Arai, Catalyst product separation techniques in heck reaction, Catal. Rev. 43 (3) (2001) 315-344. http://dx.doi.org/10.1081/CR-100107480 [35] L. Djakovitch, K. Koehler, Heck reaction catalyzed by Pd-modified zeolites, J. Am. Chem. Soc. 123 (25) (2001) 5990-5999. https://doi.org/10.1021/ja001087r [36] L. Djakovitch, K. Koehler, Heterogeneously catalysed Heck reaction using palladium modified zeolites, J. Mol. Catal. A:Chem. 142 (2) (1999) 275-284. http://dx.doi.org/10.1016/S1381-1169(98)00292-1 [37] M.K. Bhunia, S.K. Das, P. Pachfule, R. Banerjee, A. Bhaumik, Nitrogen-rich porous covalent imine network (CIN) material as an efficient catalytic support for C-C coupling reactions, Dalton Trans. 41 (4) (2012) 1304-1311. https://doi.org/10.1039/c1dt11350j [38] C.A. Wang, Y.F. Han, Y.W. Li, K. Nie, X.L. Cheng, J.P. Zhang, Bipyridyl palladium embedded porous organic polymer as highly efficient and reusable heterogeneous catalyst for Suzuki-Miyaura coupling reaction, RSC Adv. 6 (41) (2016) 34866-34871. https://doi.org/10.1039/c6ra03331h [39] S.Y. Ding, J. Gao, Q. Wang, Y. Zhang, W.G. Song, C.Y. Su, W. Wang, Construction of covalent organic framework for catalysis:Pd/COF-LZU1 in suzuki-miyaura coupling reaction, J. Am. Chem. Soc. 133 (49) (2011) 19816-19822. https://doi.org/10.1021/ja206846p [40] S.K. Mohamed, M. Abuelhamd, N.K. Allam, A. Shahat, M. Ramadan, H.M.A. Hassan, Eco-friendly facile synthesis of glucose-derived microporous carbon spheres electrodes with enhanced performance for water capacitive deionization, Desalination 477 (2020) 114278. http://dx.doi.org/10.1016/j.desal.2019.114278 [41] Sun X, Li Y, Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles, Angew Chem Int Ed Engl 43 (5) (2004) 597-601. https://www.ncbi.nlm.nih.gov/pubmed/14743414/ [42] M. Sevilla, A. Fuertes, Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides, Chem. Eur. J. 15 (16) (2009) 4195-4203. https://doi.org/10.1002/chem.200802097 [43] M. Li, W. Li, S.X. Liu, Hydrothermal synthesis, characterization, and KOH activation of carbon spheres from glucose, Carbohydr Res 346 (8) (2011) 999-1004. https://www.ncbi.nlm.nih.gov/pubmed/21481847/ [44] D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, L. Wirtz, Spatially resolved Raman spectroscopy of single- and few-layer graphene, Nano Lett 7 (2) (2007) 238-242. https://www.ncbi.nlm.nih.gov/pubmed/17297984/ [45] S. Kotha, K. Lahiri, D. Kashinath, Recent applications of the Suzuki-Miyaura cross-coupling reaction in organic synthesis, Tetrahedron 58 (48) (2002) 9633-9695. http://dx.doi.org/10.1016/S0040-4020(02)01188-2 [46] A. Schätz, T.R. Long, R.N. Grass, W.J. Stark, P.R. Hanson, O. Reiser, Immobilization on a nanomagnetic Co/C surface using ROM polymerization:Generation of a hybrid material as support for a recyclable palladium catalyst, Adv. Funct. Mater. 20 (24) (2010) 4323-4328. https://doi.org/10.1002/adfm.201000959 [47] Y. Jang, J. Chung, S. Kim, S.W. Jun, B.H. Kim, D.W. Lee, B.M. Kim, T. Hyeon, Simple synthesis of Pd-Fe3O4 heterodimer nanocrystals and their application as a magnetically recyclable catalyst for Suzuki cross-coupling reactions, Phys Chem Chem Phys 13 (7) (2011) 2512-2516. https://www.ncbi.nlm.nih.gov/pubmed/21203638/ [48] S. Moussa, A.R. Siamaki, B.F. Gupton, M.S. El-Shall, Pd-partially reduced graphene oxide catalysts (Pd/PRGO):Laser synthesis of Pd nanoparticles supported on PRGO nanosheets for carbon-carbon cross coupling reactions, ACS Catal. 2 (1) (2012) 145-154. https://doi.org/10.1021/cs200497e [49] J. Zhi, D.P. Song, Z.W. Li, X. Lei, A.G. Hu, Palladium nanoparticles in carbon thin film-lined SBA-15 nanoreactors:Efficient heterogeneous catalysts for Suzuki-Miyaura cross coupling reaction in aqueous media, Chem. Commun. Camb. Engl. 47 (38) (2011) 10707-10709. https://www.ncbi.nlm.nih.gov/pubmed/21892464/ [50] R. Li, P. Zhang, Y.M. Huang, P. Zhang, H. Zhong, Q.W. Chen, Pd-Fe3O4@C hybrid nanoparticles:Preparation, characterization, and their high catalytic activity toward Suzuki coupling reactions, J. Mater. Chem. 22 (42) (2012) 22750. https://doi.org/10.1039/c2jm35252d [51] M. Cargnello, N.L. Wieder, P. Canton, T. Montini, G. Giambastiani, A. Benedetti, R.J. Gorte, P. Fornasiero, A versatile approach to the synthesis of functionalized thiol-protected palladium nanoparticles, Chem. Mater. 23 (17) (2011) 3961-3969. https://doi.org/10.1021/cm2014658 [52] C.X. Yang, A.K. Manocchi, B. Lee, H. Yi, Viral-templated palladium nanocatalysts for Suzuki coupling reaction, J. Mater. Chem. 21 (1) (2011) 187-194. https://doi.org/10.1039/c0jm03145c [53] A. Modak, J. Mondal, M. Sasidharan, A. Bhaumik, Triazine functionalized ordered mesoporous polymer:A novel solid support for Pd-mediated C-C cross-coupling reactions in water, Green Chem. 13 (5) (2011) 1317. https://doi.org/10.1039/c1gc15045f |