[1] R. Tanoue, K. Nomiyama, H. Nakamura, J.W. Kim, T. Isobe, R. Shinohara, T. Kunisue, S. Tanabe, Uptake and tissue distribution of pharmaceuticals and personal care products in wild fish from treated-wastewater-impacted streams, Environ. Sci. Technol. 49 (19) (2015) 11649–11658. https://doi.org/10.1021/acs.est.5b02478 [2] X. Liu, Y. Zhou, C.L. Wang, Y. Liu, D.J. Tao, Solvent-free self-assembly synthesis of N-doped ordered mesoporous carbons as effective and bifunctional materials for CO2 capture and oxygen reduction reaction, Chem. Eng. J. 427 (2022) 130878. http://dx.doi.org/10.1016/j.cej.2021.130878 [3] B.A. Wilson, V.H. Smith, F. de Noyelles, C.K. Larive, Effects of three pharmaceutical and personal care products on natural freshwater algal assemblages, Environ. Sci. Technol. 37 (9) (2003) 1713–1719. https://doi.org/10.1021/es0259741 [4] Y.C. Chen, J.T. Liu, Q.B. Zeng, Z.X. Liang, X.X. Ye, Y.C. Lv, M.H. Liu, Preparation of Eucommia ulmoides lignin-based high-performance biochar containing sulfonic group: Synergistic pyrolysis mechanism and tetracycline hydrochloride adsorption, Bioresour. Technol. 329 (2021) 124856. http://dx.doi.org/10.1016/j.biortech.2021.124856 [5] Y. Wang, W.B. Jiao, J.T. Wang, G.F. Liu, H.L. Cao, J. Lü, Amino-functionalized biomass-derived porous carbons with enhanced aqueous adsorption affinity and sensitivity of sulfonamide antibiotics, Bioresour. Technol. 277 (2019) 128–135. http://dx.doi.org/10.1016/j.biortech.2019.01.033 [6] J. Cha, K.H. Carlson, Biodegradation of veterinary antibiotics in lagoon waters, Process. Saf. Environ. Prot. 127 (2019) 306–313. http://dx.doi.org/10.1016/j.psep.2019.04.009 [7] Y.Z. Liu, C. Wang, Z.Y. Sui, D.L. Zou, Degradation of chlortetracycline using nano micro-electrolysis materials with loading copper, Sep. Purif. Technol. 203 (2018) 29–35. http://dx.doi.org/10.1016/j.seppur.2018.03.064 [8] Y.W. Pan, Y. Zhang, M.H. Zhou, J.J. Cai, X. Li, Y.S. Tian, Synergistic degradation of antibiotic sulfamethazine by novel pre-magnetized Fe0/PS process enhanced by ultrasound, Chem. Eng. J. 354 (2018) 777–789. http://dx.doi.org/10.1016/j.cej.2018.08.084 [9] J. Song, J.L. Long, Y.W. Liu, Z.H. Xu, A.M. Ge, B.D. Piercy, D.A. Cullen, I.N. Ivanov, J.R. McBride, M.D. Losego, T.Q. Lian, Highly efficient plasmon induced hot-electron transfer at Ag/TiO2 interface, ACS Photonics 8 (5) (2021) 1497–1504. https://doi.org/10.1021/acsphotonics.1c00321 [10] H. Cheng, P.Y. Hong, Removal of antibiotic-resistant bacteria and antibiotic resistance genes affected by varying degrees of fouling on anaerobic microfiltration membranes, Environ. Sci. Technol. 51 (21) (2017) 12200–12209. https://pubmed.ncbi.nlm.nih.gov/28957626/ [11] F.F. Mao, Y. Zhou, W.S. Zhu, X.Y. Sang, Z.M. Li, D.J. Tao, Synthesis of guanidinium-based poly(ionic liquids) with nonporosity for highly efficient SO2 capture from flue gas, Ind. Eng. Chem. Res. 60 (16) (2021) 5984–5991. https://doi.org/10.1021/acs.iecr.1c01118 [12] D.J. Tao, F. Qu, Z.M. Li, Y. Zhou, Promoted absorption of CO at high temperature by cuprous-based ternary deep eutectic solvents, Aiche J. 67 (2) (2021) e17106. https://doi.org/10.1002/aic.17106 [13] J.H. Wang, R.H. Liu, X.L. Yin, Adsorptive removal of tetracycline on graphene oxide loaded with titanium dioxide composites and photocatalytic regeneration of the adsorbents, J. Chem. Eng. Data 63 (2) (2018) 409–416. https://doi.org/10.1021/acs.jced.7b00816 [14] W.P. Xiong, Z.T. Zeng, G.M. Zeng, Z.H. Yang, R. Xiao, X. Li, J. Cao, C.Y. Zhou, H.B. Chen, M.Y. Jia, Y. Yang, W.J. Wang, X. Tang, Metal-organic frameworks derived magnetic carbon-αFe/Fe3C composites as a highly effective adsorbent for tetracycline removal from aqueous solution, Chem. Eng. J. 374 (2019) 91–99. http://dx.doi.org/10.1016/j.cej.2019.05.164 [15] Y.Z. Hong, C.S. Li, G.Y. Zhang, Y.D. Meng, B.X. Yin, Y. Zhao, W.D. Shi, Efficient and stable Nb2O5 modified g-C3N4 photocatalyst for removal of antibiotic pollutant, Chem. Eng. J. 299 (2016) 74–84. http://dx.doi.org/10.1016/j.cej.2016.04.092 [16] C.B. Ong, L.Y. Ng, A.W. Mohammad, A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms and applications, Renew. Sustain. Energy Rev. 81 (2018) 536–551. http://dx.doi.org/10.1016/j.rser.2017.08.020 [17] S. Heidari, M. Haghighi, M. Shabani, Sunlight-activated BiOCl/BiOBr-Bi24O31Br10 photocatalyst for the removal of pharmaceutical compounds, J. Clean. Prod. 259 (2020) 120679. http://dx.doi.org/10.1016/j.jclepro.2020.120679 [18] H.W. Huang, C. Zhou, X.C. Jiao, H.F. Yuan, J.W. Zhao, C.Q. He, J. Hofkens, M.B.J. Roeffaers, J.L. Long, J.A. Steele, Subsurface defect engineering in single-unit-cell Bi2WO6 monolayers boosts solar-driven photocatalytic performance, ACS Catal. 10 (2) (2020) 1439–1443. http://dx.doi.org/10.1021/acscatal.9b04789 [19] Huang H, Zhao J, Du Y, Zhou C, Zhang M, Wang Z, Weng Y, Long J, Hofkens J, Steele JA, Roeffaers M, Direct Z-scheme heterojunction of semicoherent FAPbBr 3/Bi 2 WO 6 interface for photoredox reaction with large driving force, ACS Nano (2020) 2020Jul1. https://pubmed.ncbi.nlm.nih.gov/32573200/ [20] Z.Q. Wang, Z.L. Qi, X.J. Fan, D.Y.C. Leung, J.L. Long, Z.Z. Zhang, T.F. Miao, S.G. Meng, S.F. Chen, X.L. Fu, Intimately contacted Ni2P on CdS nanorods for highly efficient photocatalytic H2 evolution: New phosphidation route and the interfacial separation mechanism of charge carriers, Appl. Catal. B Environ. 281 (2021) 119443. http://dx.doi.org/10.1016/j.apcatb.2020.119443 [21] X.M. Xu, L.J. Meng, Y. Li, C. Sun, S.G. Yang, H. He, Bi2S3 nanoribbons-hybridized{001}facets exposed Bi2WO6 ultrathin nanosheets with enhanced visible light photocatalytic activity, Appl. Surf. Sci. 479 (2019) 410–422. http://dx.doi.org/10.1016/j.apsusc.2019.02.086 [22] Z.Y. Wu, X. Yan, H. Shen, J.L. Li, W.D. Shi, Enhanced visible-light-driven photocatalytic activity of Bi12O15Cl6/Bi2WO6 Z-scheme heterojunction photocatalysts for tetracycline degradation, Mater. Sci. Eng. B 231 (2018) 86–92. http://dx.doi.org/10.1016/j.mseb.2018.10.003 [23] B.S. Li, C. Lai, G.M. Zeng, L. Qin, H. Yi, D.L. Huang, C.Y. Zhou, X.G. Liu, M. Cheng, P. Xu, C. Zhang, F.L. Huang, S.Y. Liu, Facile hydrothermal synthesis of Z-scheme Bi2Fe4O9/Bi2WO6 heterojunction photocatalyst with enhanced visible light photocatalytic activity, ACS Appl. Mater. Interfaces 10 (22) (2018) 18824–18836. https://doi.org/10.1021/acsami.8b06128 [24] J.L. Zhang, Z. Ma, Enhanced visible-light photocatalytic performance of Ag3VO4/Bi2WO6 heterojunctions in removing aqueous dyes and tetracycline hydrochloride, J. Taiwan Inst. Chem. Eng. 78 (2017) 212–218. http://dx.doi.org/10.1016/j.jtice.2017.06.002 [25] X.C. Dou, Q.Q. Li, H.F. Shi, Ag nanoparticle-decorated 2D/2D S-scheme g-C3N4/Bi2WO6 heterostructures for an efficient photocatalytic degradation of tetracycline, CrystEngComm 23 (26) (2021) 4638–4647. https://doi.org/10.1039/d1ce00439e [26] J.X. Xia, J. Di, S. Yin, H. Xu, J. Zhang, Y.G. Xu, L. Xu, H.M. Li, M.X. Ji, Facile fabrication of the visible-light-driven Bi2WO6/BiOBr composite with enhanced photocatalytic activity, RSC Adv. 4 (1) (2014) 82–90. https://doi.org/10.1039/c3ra44191a [27] X.Z. Ren, K. Wu, Z.G. Qin, X.C. Zhao, H. Yang, The construction of type II heterojunction of Bi2WO6/BiOBr photocatalyst with improved photocatalytic performance, J. Alloys Compd. 788 (2019) 102–109. http://dx.doi.org/10.1016/j.jallcom.2019.02.211 [28] Y.N. Jia, S.H. Zhan, S.L. Ma, Q.X. Zhou, Fabrication of TiO2-Bi2WO6 binanosheet for enhanced solar photocatalytic disinfection of E. coli: Insights on the mechanism, ACS Appl. Mater. Interfaces 8 (11) (2016) 6841–6851. https://pubmed.ncbi.nlm.nih.gov/26910210/ [29] N.D. Phu, L.H. Hoang, P.V. Hai, T.Q. Huy, X.B. Chen, W.C. Chou, Photocatalytic activity enhancement of Bi2WO6 nanoparticles by Ag doping and Ag nanoparticles modification, J. Alloys Compd. 824 (2020) 153914. http://dx.doi.org/10.1016/j.jallcom.2020.153914 [30] Y.X. Guo, Y.H. Zhang, N. Tian, H.W. Huang, Homogeneous{001}-BiOBr/Bi heterojunctions: Facile controllable synthesis and morphology-dependent photocatalytic activity, ACS Sustain. Chem. Eng. 4 (7) (2016) 4003–4012. http://dx.doi.org/10.1021/acssuschemeng.6b00884 [31] Z.S. Liu, B.T. Wu, Y.B. Zhu, D. Yin, L.G. Wang, Fe-ions modified BiOBr mesoporous microspheres with excellent photocatalytic property, Catal. Lett. 142 (12) (2012) 1489–1497. http://dx.doi.org/10.1007/s10562-012-0899-9 [32] J. Chen, Y.B. Wang, C.S. Ye, W. Lyu, J.W. Zhu, W. Yan, T. Qiu, Self-reducible conjugated microporous polyaniline for long-term selective Cr(VI) detoxication driven by tunable pore dimension, ACS Appl. Mater. Interfaces 12 (25) (2020) 28681–28691. https://doi.org/10.1021/acsami.0c07059 [33] J. Chen, W. Yan, E.J. Townsend, J. Feng, L. Pan, V. del Angel Hernandez, C. Faul, Tunable surface area, porosity, and function in conjugated microporous polymers, Angew. Chem. Int. Ed Engl. 58 (34) (2019) 11715–11719. https://pubmed.ncbi.nlm.nih.gov/31206908/ [34] L.B. Jiang, X.Z. Yuan, G.M. Zeng, X.H. Chen, Z.B. Wu, J. Liang, J. Zhang, H. Wang, H. Wang, Phosphorus- and sulfur-codoped g-C3N4: Facile preparation, mechanism insight, and application as efficient photocatalyst for tetracycline and methyl orange degradation under visible light irradiation, ACS Sustainable Chem. Eng. 5 (7) (2017) 5831–5841. https://doi.org/10.1021/acssuschemeng.7b00559 [35] W.L. Shi, H.J. Ren, M.Y. Li, K.K. Shu, Y.S. Xu, C. Yan, Y.B. Tang, Tetracycline removal from aqueous solution by visible-light-driven photocatalytic degradation with low cost red mud wastes, Chem. Eng. J. 382 (2020) 122876. http://dx.doi.org/10.1016/j.cej.2019.122876 [36] X.Y. Lou, J. Chen, Z. Xiong, D.L. Tang, X.Y. Chen, S. Chen, R. Dong, C.S. Ye, T. Qiu, Porosity design on conjugated microporous poly(aniline)S for exceptional mercury(II) removal, ACS Appl. Mater. Interfaces 13 (51) (2021) 61653–61660. https://doi.org/10.1021/acsami.1c19011 [37] S.J. Li, S.W. Hu, K.B. Xu, W. Jiang, Y. Liu, Z. Leng, J.S. Liu, Construction of fiber-shaped silver oxide/tantalum nitride p-n heterojunctions as highly efficient visible-light-driven photocatalysts, J. Colloid Interface Sci. 504 (2017) 561–569. http://dx.doi.org/10.1016/j.jcis.2017.06.018 [38] Y.Z. Hong, C.S. Li, B.X. Yin, D. Li, Z.Y. Zhang, B.D. Mao, W.Q. Fan, W. Gu, W.D. Shi, Promoting visible-light-induced photocatalytic degradation of tetracycline by an efficient and stable beta-Bi2O3@g-C3N4 core/shell nanocomposite, Chem. Eng. J. 338 (2018) 137–146. http://dx.doi.org/10.1016/j.cej.2017.12.108 [39] X.D. Zhang, J.F. Chen, S.T. Jiang, X.L. Zhang, F.K. Bi, Y. Yang, Y.X. Wang, Z. Wang, Enhanced photocatalytic degradation of gaseous toluene and liquidus tetracycline by anatase/rutile titanium dioxide with heterophase junction derived from materials of Institut Lavoisier-125(Ti): Degradation pathway and mechanism studies, J. Colloid Interface Sci. 588 (2021) 122–137. http://dx.doi.org/10.1016/j.jcis.2020.12.042 [40] G.L. Li, J.R. Ye, Q.L. Fang, F. Liu, Amide-based covalent organic frameworks materials for efficient and recyclable removal of heavy metal lead (II), Chem. Eng. J. 370 (2019) 822–830. http://dx.doi.org/10.1016/j.cej.2019.03.260 [41] X. Gao, J. Niu, Y.F. Wang, Y. Ji, Y.L. Zhang, Solar photocatalytic abatement of tetracycline over phosphate oxoanion decorated Bi2WO6/polyimide composites, J. Hazard. Mater. 403 (2021) 123860. http://dx.doi.org/10.1016/j.jhazmat.2020.123860 [42] C. Xue, T.X. Zhang, S.J. Ding, J.J. Wei, G.D. Yang, Anchoring tailored low-index faceted BiOBr nanoplates onto TiO 2 nanorods to enhance the stability and visible-light-driven catalytic activity, ACS Appl. Mater. Interfaces 9 (19) (2017) 16091–16102. https://pubmed.ncbi.nlm.nih.gov/28440617/ [43] F. Chen, D. Li, B.F. Luo, M. Chen, W.D. Shi, Two-dimensional heterojunction photocatalysts constructed by graphite-like C3N4 and Bi2WO6 nanosheets: Enhanced photocatalytic activities for water purification, J. Alloys Compd. 694 (2017) 193–200. http://dx.doi.org/10.1016/j.jallcom.2016.09.326 [44] A. Pancielejko, J. Łuczak, W. Lisowski, A. Zaleska-Medynska, P. Mazierski, Novel two-step synthesis method of thin film heterojunction of BiOBr/Bi2WO6 with improved visible-light-driven photocatalytic activity, Appl. Surf. Sci. 569 (2021) 151082. http://dx.doi.org/10.1016/j.apsusc.2021.151082 [45] R. Marschall, Semiconductor composites: Strategies for enhancing charge carrier separation to improve photocatalytic activity, Adv. Funct. Mater. 24 (17) (2014) 2421–2440. http://dx.doi.org/10.1002/adfm.201303214 [46] J.S. Hu, W.J. An, H. Wang, J.P. Geng, W.Q. Cui, Y. Zhan, Synthesis of a hierarchical BiOBr nanodots/Bi2WO6 p–n heterostructure with enhanced photoinduced electric and photocatalytic degradation performance, RSC Adv. 6 (35) (2016) 29554–29562. https://doi.org/10.1039/c6ra00794e [47] F. Chen, Q. Yang, J. Sun, F.B. Yao, S.N. Wang, Y.L. Wang, X.L. Wang, X.M. Li, C.G. Niu, D.B. Wang, G.M. Zeng, Enhanced photocatalytic degradation of tetracycline by AgI/BiVO4 heterojunction under visible-light irradiation: Mineralization efficiency and mechanism, ACS Appl. Mater. Interfaces 8 (48) (2016) 32887–32900. https://doi.org/10.1021/acsami.6b12278 [48] S.S. Tao, S.D. Sun, T. Zhao, J. Cui, M. Yang, X.J. Yu, Q. Yang, X. Zhang, S.H. Liang, One-pot construction of Ta-doped BiOCl/Bi heterostructures toward simultaneously promoting visible light harvesting and charge separation for highly enhanced photocatalytic activity, Appl. Surf. Sci. 543 (2021) 148798. http://dx.doi.org/10.1016/j.apsusc.2020.148798 [49] S.S. Ma, J.D. Gu, Y.Q. Zong, J.J. Xue, Z.L. Ye, Microwave solvothermal synthesis of three-dimensional Bi2MoO6 microspheres with enhanced photocatalytic activity, ACS Omega 5 (43) (2020) 28037–28045. https://doi.org/10.1021/acsomega.0c03595 [50] Z.H. Wu, J. Liu, Q.Y. Tian, W. Wu, Efficient visible light formaldehyde oxidation with 2D p-n heterostructure of BiOBr/BiPO4 nanosheets at room temperature, ACS Sustain. Chem. Eng. 5 (6) (2017) 5008–5017. http://dx.doi.org/10.1021/acssuschemeng.7b00412 [51] M. Hojamberdiev, B. Czech, A.C. Göktaş, K. Yubuta, Z.C. Kadirova, SnO2@ZnS photocatalyst with enhanced photocatalytic activity for the degradation of selected pharmaceuticals and personal care products in model wastewater, J. Alloys Compd. 827 (2020) 154339. http://dx.doi.org/10.1016/j.jallcom.2020.154339 [52] H. Fattahimoghaddam, T. Mahvelati-Shamsabadi, B.K. Lee, Efficient photodegradation of rhodamine B and tetracycline over robust and green g-C3N4 nanostructures: Supramolecular design, J. Hazard. Mater. 403 (2021) 123703. http://dx.doi.org/10.1016/j.jhazmat.2020.123703 |