[1] J.N. Zhao, F.L. Wang, X. Zhang, L.J. Liang, X.Q. Yang, Q.W. Li, X.H. Zhang, Vibration damping of carbon nanotube assembly materials, Adv. Eng. Mater. 20 (3) (2018) 1700647. [2] N. Choudhary, D. Kaur, Vibration damping materials and their applications in nano/micro-electro-mechanical systems: A review, J. Nanosci. Nanotechnol. 15 (3) (2015) 1907–1924. [3] J.L. Luo, Z.D. Duan, G.J. Xian, Q.Y. Li, T.J. Zhao, Damping performances of carbon nanotube reinforced cement composite, Mech. Adv. Mater. Struct. 22 (3) (2015) 224–232. [4] W.M. van Spengen, MEMS reliability from a failure mechanisms perspective, Microelectron. Reliab. 43 (7) (2003) 1049–1060. [5] C. Li, S.A. Xu, F.Y. Xiao, C.F. Wu, Dynamic mechanical properties of chlorinated butyl rubber blends, Eur. Polym. J. 42 (10) (2006) 2507–2514. [6] D.W. Yang, X.Y. Zhao, T. Chan, L.Q. Zhang, S.Z. Wu, Investigation of the damping properties of hindered phenol AO-80/polyacrylate hybrids using molecular dynamics simulations in combination with experimental methods, J. Mater. Sci. 51 (12) (2016) 5760–5774. [7] C. Su, D.Z. Zong, L.H. Xu, C. Zhang, Dynamic mechanical properties of semi-interpenetrating polymer network-based on nitrile rubber and poly(methyl methacrylate-co-butyl acrylate), J. Appl. Polym. Sci. 131 (9) (2014) 40217. [8] L. Quiroga Cortes, L. Sanches, C. Bessaguet, M. Chevalier, C. Lacabanne, E. Dantras, G. Michon, Improving damping capabilities of composites structures by electroactive films containing piezoelectric and conductive fillers, Smart Mater. Struct. 30 (8) (2021) 085008. [9] Z.Y. Sheng, J.C. Wang, S.Y. Yang, S.Q. Song, Novel polysiloxane microspheres: Preparation and application in chlorinated butyl rubber (CIIR) damping composites, Adv. Powder Technol. 30 (3) (2019) 632–643. [10] J.Y. Liang, S.Q. Chang, N. Feng, Effect of C5 petroleum resin content on damping behavior, morphology, and mechanical properties of BIIR/BR vulcanizates, J. Appl. Polym. Sci. 130 (1) (2013) 510–515. [11] F.S. Zhang, G.S. He, K.M. Xu, H. Wu, S.Y. Guo, The damping and flame-retardant properties of poly(vinyl chloride)/chlorinated butyl rubber multilayered composites, J. Appl. Polym. Sci. 132 (2) (2015) 41259. [12] Z. Gu, L. Gao, G.J. Song, W.S. Liu, P.Y. Li, C.P. Shan, Octadecylammonium montmorillonite/natural rubber/cis-1,4-polybutadiene nanocomposites, Appl. Clay Sci. 50 (1) (2010) 143–147. [13] X. Wang, D.L. Chen, W.S. Zhong, L. Zhang, X.Q. Fan, Z.B. Cai, M.H. Zhu, Experimental and theoretical evaluations of the interfacial interaction between carbon nanotubes and carboxylated butadiene nitrile rubber: Mechanical and damping properties, Mater. Des. 186 (2020) 108318. [14] K.Y. Tang, J.C. Wang, Chlorinated butyl rubber/two-step modified montmorillonite nanocomposites: Mechanical and damping properties, Chin. J. Chem. Eng. (2021). [15] L. Bokobza, Multiwall carbon nanotube elastomeric composites: A review, Polymer 48 (17) (2007) 4907–4920. [16] X. Yu, Y. Zhang, L. Jin, J.Y. Chen, Z.H. Jiang, Y.H. Zhang, High-performance piezo-damping materials based on CNTs/BaTiO3/F-PAEK-b-PDMS under high temperature steam conditions, Appl. Surf. Sci. 452 (2018) 429–436. [17] C.H. Dai, X.J. Cao, K. Gou, Q.Y. Yin, B.J. Du, G.S. Weng, Iron (III) cross-linked thermoplastic nitrile butadiene elastomer with temperature-adaptable self-healing property, J. Polym. Res. 28 (3) (2021) 1–9. [18] Z.X. Li, Y.F. Shan, X.X. Wang, H. Li, K. Yang, Y.Y. Cui, Self-healing flexible sensor based on metal-ligand coordination, Chem. Eng. J. 394 (2020) 124932. [19] Y. Lu, J.C. Wang, L. Wang, S.Q. Song, Diphenolic acid-modified PAMAM/chlorinated butyl rubber nanocomposites with superior mechanical, damping, and self-healing properties, Sci. Technol. Adv. Mater. 22 (1) (2021) 14–25. [20] C.F. Wu, Effects of a hindered phenol compound on the dynamic mechanical properties of chlorinated polyethylene, acrylic rubber, and their blend, J. Appl. Polym. Sci. 80 (13) (2001) 2468–2473. [21] J.H. Zhang, C. Wang, W.T. Zao, H.D. Feng, Y.G. Hou, A.J. Huo, High-performance nitrile butadiene rubber composites with good mechanical properties, tunable elasticity, and robust shape memory behaviors, Ind. Eng. Chem. Res. 59 (36) (2020) 15936–15947. [22] C. Su, P. He, R.J. Yan, C.B. Zhao, C. Zhang, Study of the orientation-controlled damping temperature based on selective distribution of oligo-phenol in acrylate rubber/chlorinated butyl rubber blends, Polym. Compos. 33 (6) (2012) 860–865. [23] D.A. Tomalia, A.M. Naylor, W.A.I. Goddard, Starburst-dendrimere: Kontrolle von größe, gestalt, oberflächenchemie, topologie und flexibilität beim übergang von atomen zu makroskopischer materier, Angew. Chem. 102 (2) (1990) 119–157. [24] Y.R. Lee, S.Q. Zhang, K. Yu, J. Choi, W.S. Ahn, Poly(amidoamine) dendrimer immobilized on mesoporous silica foam (MSF) and fibrous nano-silica KCC-1 for Gd3+ adsorption in water, Chem. Eng. J. 378 (2019) 122133. [25] J. Manikkath, A. Manikkath, G.V. Shavi, K. Bhat, S. Mutalik, Low frequency ultrasound and PAMAM dendrimer facilitated transdermal delivery of ketoprofen, J. Drug Deliv. Sci. Technol. 41 (2017) 334–343. [26] V.M. Thanh, T.H. Nguyen, T.V. Tran, U.-T.P. Ngoc, M.N. Ho, T.T. Nguyen, Y.N.T. Chau, N.Q. Tran, C.K. Nguyen, D.H. Nguyen, Low systemic toxicity nanocarriers fabricated from heparin-mPEG and PAMAM dendrimers for controlled drug release, Mater. Sci. Eng., C 82 (2018) 291–298. [27] G. Yang, D.L. Qing, H.F. Gao, N.P. Xu, Effect of the para-substituent of the tridentate pyridine-based Ru(II) complex upon the catalytic activity in transfer hydrogenation, Chin. J. Chem. Eng. 19 (1) (2011) 169–172. [28] F. Giacalone, V. Campisciano, C. Calabrese, V. La Parola, Z. Syrgiannis, M. Prato, M. Gruttadauria, Single-walled carbon nanotube–polyamidoamine dendrimer hybrids for heterogeneous catalysis, ACS Nano 10 (4) (2016) 4627–4636. [29] N.U. Kaya, F.E. Du Prez, N. Badi, Multifunctional dendrimer formation using thiolactone chemistry, Macromol. Chem. Phys. 218 (18) (2017) 1600575. [30] S. Martens, J. Van den Begin, A. Madder, F.E. Du Prez, P. Espeel, Automated synthesis of monodisperse oligomers, featuring sequence control and tailored functionalization, J. Am. Chem. Soc. 138 (43) (2016) 14182–14185. [31] C. Mertens, M. Soete, M.L. Ślęczkowski, A.R.A. Palmans, E.W. Meijer, N. Badi, F.E. Du Prez, Stereocontrolled, multi-functional sequence-defined oligomers through automated synthesis, Polym. Chem. 11 (26) (2020) 4271–4280. [32] M.A. Meyers, J. McKittrick, P.Y. Chen, Structural biological materials: Critical mechanics-materials connections, Science 339 (6121) (2013) 773–779. [33] C.H. Xu, J.D. Nie, W.C. Wu, L.H. Fu, B.F. Lin, Design of self-healable supramolecular hybrid network based on carboxylated styrene butadiene rubber and nano-chitosan, Carbohydr. Polym. 205 (2019) 410–419. [34] C.H. Xu, W.C. Wu, J.D. Nie, L.H. Fu, B.F. Lin, Preparation of carboxylic styrene butadiene rubber/chitosan composites with dense supramolecular network via solution mixing process, Compos. A Appl. Sci. Manuf. 117 (2019) 116–124. [35] P. Espeel, S. Celasun, P.S. Omurtag, S. Martens, F.E. Du Prez, Responsive thiolactone-derived N-substituted poly(urethane-amide)s, Macromol. Rapid Commun. 38 (7) (2017) 1600783. [36] Y. Motoyama, K. Kamo, H. Nagashima, Catalysis in polysiloxane gels: Platinum-catalyzed hydrosilylation of polymethylhydrosiloxane leading to reusable catalysts for reduction of nitroarenes, Org. Lett. 11 (6) (2009) 1345–1348. [37] A.L. Sun, W.J. Guo, J.P. Zhang, W.J. Li, X. Liu, H. Zhu, Y.H. Li, L.H. Wei, Excellent toughening of 2,6-diaminopyridine derived poly (urethane urea) via dynamic cross-linkages and interfering with hydrogen bonding of urea groups from partially coordinated ligands, Polymers 11 (8) (2019) 1320. [38] Z.H. Tang, X.H. Wu, B.C. Guo, L.Q. Zhang, D.M. Jia, Preparation of butadiene–styrene–vinyl pyridine rubber–graphene oxide hybrids through co-coagulation process and in situ interface tailoring, J. Mater. Chem. 22 (15) (2012) 7492–7501. [39] Z.H. Tang, J. Huang, B.C. Guo, L.Q. Zhang, F. Liu, Bioinspired engineering of sacrificial metal-ligand bonds into elastomers with supramechanical performance and adaptive recovery, Macromolecules 49 (5) (2016) 1781–1789. [40] M. Hayashi, S. Matsushima, A. Noro, Y. Matsushita, Mechanical property enhancement of ABA block copolymer-based elastomers by incorporating transient cross-links into soft middle block, Macromolecules 48 (2) (2015) 421–431. [41] L.A. Saghatforoush, A. Aminkhani, S. Ershad, G. Karimnezhad, S. Ghammamy, R. Kabiri, Preparation of zinc (II) and cadmium (II) complexes of the tetradentate Schiff base ligand 2-((E)-(2-(2-(pyridine-2-yl)- ethylthio)ethylimino)methyl)-4-bromophenol (PytBrsalH), Molecules 13 (4) (2008) 804–811. [42] Y. Chen, Z.H. Tang, Y.J. Liu, S.W. Wu, B.C. Guo, Mechanically Robust, Self-healable, and reprocessable elastomers enabled by dynamic dual cross-links, Macromolecules 52 (10) (2019) 3805–3812. [43] M.W. Yan, L.M. Cao, C.H. Xu, Y.K. Chen, Fabrication of “Zn2+ salt-bondings” cross-linked SBS-g-COOH/ZnO composites: Thiol–ene reaction modification of SBS, structure, high modulus, and shape memory properties, Macromolecules 52 (11) (2019) 4329–4340. [44] D. Mozhdehi, S. Ayala, O.R. Cromwell, Z.B. Guan, Self-healing multiphase polymers via dynamic metal-ligand interactions, J. Am. Chem. Soc. 136 (46) (2014) 16128–16131. [45] F.S. Zhang, G.S. He, K.M. Xu, H. Wu, S.Y. Guo, C.L. Zhang, Damping mechanism and different modes of molecular motion through the glass transition of chlorinated butyl rubber and petroleum resin blends, J. Appl. Polym. Sci. 131 (13) (2014) 40464. [46] C. Liu, J.F. Fan, Y.K. Chen, Design of regulable chlorobutyl rubber damping materials with high-damping value for a wide temperature range, Polym. Test. 79 (2019) 106003. [47] Z.X. Gu, A.J. Xu, J.B. Chang, S.W. Li, Y.B. Xiang, Optimization of the production organization pattern in Tangshan Iron and Steel Co., Ltd., J. Iron Steel Res. Int. 21 (2014) 17–22. [48] F. Song, Z.S. Li, P.Y. Jia, M. Zhang, C.Y. Bo, G.D. Feng, L.H. Hu, Y.H. Zhou, Tunable “soft and stiff”, self-healing, recyclable, thermadapt shape memory biomass polymers based on multiple hydrogen bonds and dynamic imine bonds, J. Mater. Chem. A 7 (21) (2019) 13400–13410. [49] J. Cao, C.H. Lu, J. Zhuang, M.X. Liu, X.X. Zhang, Y.M. Yu, Q.C. Tao, Multiple hydrogen bonding enables the self-healing of sensors for human-machine interactions, Angew. Chem. Int. Ed. 56 (30) (2017) 8795–8800. |