[1] C.H. Park, J.H. Lee, J.P. Jung, J.H. Kim, Mixed matrix membranes based on dual-functional MgO nanosheets for olefin/paraffin separation, J. Membr. Sci. 533 (2017) 48–56. [2] J.J. Hou, P.C. Liu, M. Jiang, L. Yu, L.S. Li, Z.Y. Tang, Olefin/paraffin separation through membranes: From mechanisms to critical materials, J. Mater. Chem. A 7 (41) (2019) 23489–23511. [3] Y.X. Ren, X. Liang, H.Z. Dou, C.M. Ye, Z.Y. Guo, J.Y. Wang, Y.C. Pan, H. Wu, M.D. Guiver, Z.Y. Jiang, Membrane-based olefin/paraffin separations, Adv. Sci. 7 (19) (2020) 2001398. [4] A. Campos, R.A. dos Reis, A. Ortiz, D. Gorri, I. Ortiz, A perspective of solutions for membrane instabilities in olefin/paraffin separations: A review, Ind. Eng. Chem. Res.57 (31) (2018) 10071–10085. [5] A.H. Assen, Y. Belmabkhout, K. Adil, P.M.Bhatt, D.X. Xue, H. Jiang, M. Eddaoudi, Ultra-tuning of the rare-earth fcu-MOF aperture size for selective molecular exclusion of branched paraffins, Angew. Chem. Int. Ed. 54 (48) (2015) 14353–14358. [6] L.B. Li, H.M. Wen, C.H. He, R.B. Lin, R. Krishna, H. Wu, W. Zhou, J.P. Li, B. Li, B.L. Chen, A metal–organic framework with suitable pore size and specific functional sites for the removal of trace propyne from propylene, Angew. Chem. Int. Ed. 57 (46) (2018) 15183–15188. [7] W. Su, A. Zhang, Y. Sun, M. Ran, X.J. Wang, Adsorption properties of C2H4 and C3H6 on 11 adsorbents, J. Chem. Eng. Data 62 (1) (2017) 417–421. [8] M. Naghsh, M. Sadeghi, A. Moheb, M.P. Chenar, M. Mohagheghian, Separation of ethylene/ethane and propylene/propane by cellulose acetate-silica nanocomposite membranes, J. Membr. Sci. 423-424 (2012) 97–106. [9] Y.X. Wang, S.B. Peh, D. Zhao, Alternatives to cryogenic distillation: Advanced porous materials in adsorptive light olefin/paraffin separations, Small 15 (25) (2019) 1900058. [10] P. Su, Membrane technology for use in a methanol-to-propylene conversion process, U.S. Pat., US09205380B2 (2015). [11] D.M. Zhang, Review of separation process for methanol to olefins, Chem. Ind. 30 (6)(2012) 12–17. [12] D.F. Sanders, Z.P. Smith, R.L. Guo, L.M. Robeson, J.E. McGrath, D.R. Paul, B.D. Freeman, Energy-efficient polymeric gas separation membranes for a sustainable future: A review, Polymer 54 (18) (2013) 4729–4761. [13] C.Z. Liang, T.S. Chung, J.Y. Lai, A review of polymeric composite membranes for gas separation and energy production, Prog. Polym. Sci. 97 (2019) 101141. [14] Y.C. Liu, J.X. Zhang, X.Y. Tan, High performance of PIM-1/ZIF-8 composite membranes for O2/N2 separation, ACS Omega 4 (15) (2019) 16572–16577. [15] C.H. Pian, J. Shen, G.P. Liu, Z.K. Liu, W.Q. Jin, Ceramic hollow fiber-supported PDMS composite membranes for oxygen enrichment from air, Asia-Pac. J. Chem. Eng. 11 (3) (2016) 460–466. [16] J. Poudel, J. Choi, S. Oh, Process design characteristics of syngas (CO/H2) separation using composite membrane, Sustainability 11 (3) (2019) 703. [17] M.Z. Ahmad, T.A. Peters, N.M. Konnertz, T. Visser, C. Téllez, J. Coronas, V. Fila, W.M. de Vos, N.E. Benes, High-pressure CO2/CH4 separation of Zr-MOFs based mixed matrix membranes, Sep. Purif. Technol. 230 (2020) 115858. [18] M. Isanejad, N. Azizi, T. Mohammadi, Pebax membrane for CO2/CH4 separation: Effects of various solvents on morphology and performance,J. Appl. Polym. Sci. 134 (9) (2017)44531. [19] L. Yu, M.S. Nobandegani, J. Hedlund, Industrially relevant CHA membranes for CO2/CH4 separation, J. Membr. Sci. 641 (2022) 119888. [20] D.H. Liu, L. Xiang, H. Chang, K. Chen, C.Q. Wang, Y.C. Pan, Y.S. Li, Z.Y. Jiang, Rational matching between MOFs and polymers in mixed matrix membranes for propylene/propane separation, Chem. Eng. Sci. 204 (2019) 151–160. [21] X.Y. Chen, A.G. Xiao, D. Rodrigue, Polymer-based membranes for propylene/propane separation, Sep. Purif. Rev. 51 (1) (2022) 130–142. [22] Z.Y. Wang, W.J. Wang, T. Zeng, D. Ma, P.P. Zhang, S.Q. Zhao, L. Yang, X.Q. Zou, G.S. Zhu, Covalent-linking-enabled superior compatibility of ZIF-8 hybrid membrane for efficient propylene separation, Adv. Mater. 34 (6) (2022) e2104606. [23] Y.C. Pan, Z.P. Lai, Sharp separation of C2/C3 hydrocarbon mixtures by zeolitic imidazolate framework-8 (ZIF-8) membranes synthesized in aqueous solutions, Chem. Commun. 47 (37) (2011) 10275–10277. [24] X. Zhang, M.Y. Yan, X.S. Feng, X.D. Wang, W. Huang, Ethylene/propylene separation using mixed matrix membranes of poly (ether block amide)/nano-zeolite (NaY or NaA), Korean J. Chem. Eng. 38 (3) (2021) 576–586. [25] W.H. Lee, J.G. Seong, J.Y. Bae, H.H. Wang, S.J. Moon, J.T. Jung, Y.S. Do, H. Kang, C.H. Park, Y.M. Lee, Thermally rearranged semi-interpenetrating polymer network (TR-SIPN) membranes for gas and olefin/paraffin separation, J. Membr. Sci. 625 (2021) 119157. [26] S.H. Choi, J.H. Kim, S.B. Lee, Sorption and permeation behaviors of a series of olefins and nitrogen through PDMS membranes, J. Membr. Sci. 299 (1–2) (2007) 54–62. [27] L. Liu, A. Chakma, X.S. Feng, Sorption, diffusion, and permeation of light olefins in poly(ether block amide) membranes, Chem. Eng. Sci. 61 (18) (2006) 6142–6153. [28] P. Li, T.S. Chung, D.R. Paul, Gas sorption and permeation in PIM-1, J. Membr. Sci. 432 (2013) 50–57. [29] J. Ravi, M.H.D. Othman, T. Matsuura, M. Ro'il Bilad, T.H. El-badawy, F. Aziz, A.F. Ismail, M.A. Rahman, J. Jaafar, Polymeric membranes for desalination using membrane distillation: A review, Desalination 490 (2020) 114530. [30] Z.C. Zhang, C.G. Guo, J.L. Lv, Tributyl citrate as diluent for preparation of PVDFporous membrane via thermally induced phase separation, Polym. Polym. Compos. 23 (3) (2015) 175–180. [31] W.F. Yong, H. Zhang, Recent advances in polymer blend membranes for gas separation and pervaporation, Prog. Mater. Sci. 116 (2021) 100713. [32] A. Mahmoudi, M. Asghari, V. Zargar, CO2/CH4 separation through a novel commercializable three-phase PEBA/PEG/NaX nanocomposite membrane, J. Ind. Eng. Chem. 23 (2015) 238–242. [33] N. Azizi, T. Mohammadi, R.M. Behbahani, Synthesis of a new nanocomposite membrane (PEBAX-1074/PEG-400/TiO2) in order to separate CO2 from CH4, J. Nat. Gas Sci. Eng. 37 (2017) 39–51. [34] N. Azizi, M.R. Hojjati, M.M. Zarei, Study of CO2 and CH4 permeation properties through prepared and characterized blended pebax-2533/PEG-200 membranes, Silicon 10 (4) (2018) 1461–1467. [35] E. Aionicesei, M. Škerget, Ž. Knez, Measurement and modeling of the CO2 solubility in poly(ethylene glycol) of different molecular weights, J. Chem. Eng. Data53 (1) (2008) 185–188. [36] A. Car, C. Stropnik, W. Yave, K.V. Peinemann, PEG modified poly(amide-b-ethylene oxide) membranes for CO2 separation, J. Membr. Sci. 307 (1) (2008) 88–95. [37] L.L. Dong, C.F. Zhang, Y.X. Bai, D.J. Shi, X.J. Li, H.J. Zhang, M.Q. Chen, High-performance PEBA2533-functional MMT mixed matrix membrane containing high-speed facilitated transport channels for CO2/N2 separation, ACS Sustainable Chem. Eng. 4 (6) (2016) 3486–3496. [38] L. Liu, A. Chakma, X.S. Feng, A novel method of preparing ultrathin poly(ether block amide) membranes, J. Membr. Sci. 235 (1–2) (2004) 43–52. [39] Y. Kamiya, Y. Naito, K. Mizoguchi, K. Terada, J. Moreau, Thermodynamic interactions in rubbery polymer/gas systems, J. Polym. Sci. B Polym. Phys. 35 (7) (1997) 1049–1053. [40] S.R. Reijerkerk, K. Nijmeijer, C.P. Ribeiro Jr, B.D. Freeman, M. Wessling, On the effects of plasticization in CO2/light gas separation using polymeric solubility selective membranes, J. Membr. Sci. 367 (1–2) (2011) 33–44. [41] S.C. Feng, J.Z. Ren, D. Zhao, H. Li, K.S. Hua, X.X. Li, M.C. Deng, Effect of poly(ethylene glycol) molecular weight on CO2/N2 separation performance of poly(amide-12-b-ethylene oxide)/poly(ethylene glycol) blend membranes, J. Energy Chem. 28 (2019) 39–45. [42] H. Sanaeepur, A. Ebadi Amooghin, A. Moghadassi, A. Kargari, S. Moradi, D. Ghanbari, A novel acrylonitrile-butadiene-styrene/poly(ethylene glycol) membrane: Preparation, characterization, and gas permeation study, Polym. Adv. Technol. 23 (8) (2012) 1207–1218. [43] P. Taheri, A. Raisi, M.S. Maleh, CO2-selective poly (ether-block-amide)/polyethylene glycol composite blend membrane for CO2 separation from gas mixtures, Environ. Sci. Pollut. Res. 28 (28) (2021) 38274–38291. [44] S.C. Feng, J.Z. Ren, K.S. Hua, H. Li, X.L. Ren, M.C. Deng, Poly(amide-12-b-ethylene oxide)/polyethylene glycol blend membranes for carbon dioxide separation, Sep. Purif. Technol. 116 (2013) 25–34. [45] M. Pazirofteh, M. Abdolmajidi, M. Samipoorgiri, M. Dehghani, A.H. Mohammadi, Separation and transport specification of a novel PEBA-1074/PEG-400/TiO2 nanocomposite membrane for light gas separation: Molecular simulation study, J. Mol. Liq. 291 (2019) 111268. [46] A. Droudian, M. Lokesh, S.K. Youn, H.G. Park, Gas concentration polarization and transport mechanism transition near thin polymeric membranes, J. Membr. Sci. 567 (2018) 1–6. [47] G.H. He, Y.L. Mi, P. Lock Yue, G.H. Chen, Theoretical study on concentration polarization in gas separation membrane processes, J. Membr. Sci.153 (2) (1999) 243–258. [48] J.E. Shin, S.K. Lee, Y.H. Cho, H.B. Park, Effect of PEG-MEA and graphene oxide additives on the performance of Pebax®1657 mixed matrix membranes for CO2 separation, J. Membr. Sci.572 (2019) 300–308. [49] M. Rao, S. Sircar, T.C. Golden, Gas separation by adsorbent membranes, U.S. Pat., 724063, 1991. [50] S. Sircar, A.L. Myers, Gas separation by zeolites,Handbook of zolite science and technology, 2003. [51] S.S. Zhao, J.Y. Liao, D.F. Li, X.D. Wang, N.W. Li, Blending of compatible polymer of intrinsic microporosity (PIM-1) with Tröger's Base polymer for gas separation membranes, J. Membr. Sci. 566 (2018) 77–86. [52] X.R. Zhang, T. Zhang, Y.H. Wang, J.P. Li, C.C. Liu, N.W. Li, J.Y. Liao, Mixed-matrix membranes based on Zn/Ni-ZIF-8-PEBA for high performance CO2 separation, J. Membr. Sci. 560 (2018) 38–46. [53] W.D. Fan, X. Wang, X.R. Zhang, X.P. Liu, Y.T. Wang, Z.X. Kang, F.N. Dai, B. Xu, R.M. Wang, D.F. Sun, Fine-tuning the pore environment of the microporous Cu-MOF for high propylene storage and efficient separation of light hydrocarbons, ACS Cent. Sci. 5 (7) (2019) 1261–1268. |