[1] M. Wang, Q.X. Zhang, Q.X. Xie, L.L. Wan, Y. Zhao, X.D. Zhang, J.S. Luo, Selective electrochemical reduction of carbon dioxide to ethylene on a copper hydroxide nitrate nanostructure electrode, Nanoscale 12 (32)(2020) 17013–17019. [2] Y. Wu, Y. Zhang, N.Q. Chen, S. Dai, H. Jiang, S.Q. Wang, Effects of amine loading on the properties of cellulose nanofibrils aerogel and its CO2 capturing performance, Carbohydr. Polym. 194 (2018) 252–259. [3] A.S. Bhown, B.C. Freeman, Analysis and status of post-combustion carbon dioxide capture technologies, Environ. Sci. Technol. 45 (20)(2011) 8624–8632. [4] G.J. Zhang, P.Y. Zhao, L.X. Hao, Y. Xu, H.Z. Cheng, A novel amine double functionalized adsorbent for carbon dioxide captureusing original mesoporous silica molecular sieves as support, Sep. Purif. Technol. 209 (2019) 516–527. [5] K. Sumida, D.L. Rogow, J.A. Mason, T.M. McDonald, E.D. Bloch, Z.R. Herm, T.H. Bae, J.R. Long, Carbon dioxide capture in metal–organic frameworks, Chem. Rev. 112 (2)(2012) 724–781. [6] D.F. Lv, J.Y. Chen, K.X. Yang, H.X. Wu, Y.W. Chen, C.X. Duan, Y. Wu, J. Xiao, H.X. Xi, Z. Li, Q.B. Xia, Ultrahigh CO2/CH4 and CO2/N2 adsorption selectivities on a cost-effectively L-aspartic acid based metal–organic framework, Chem. Eng. J. 375 (2019) 122074. [7] W.D. Fan, X. Wang, X.P. Liu, B. Xu, X.R. Zhang, W.J. Wang, X.K. Wang, Y.T. Wang, F.N. Dai, D.Q. Yuan, D.F. Sun, Regulating C2H2 and CO2 storage and separation through pore environment modification in a microporous Ni-MOF, ACS Sustain. Chem. Eng. 7 (2)(2019) 2134–2140. [8] C. Chen, S. Bhattacharjee, Trimodal nanoporous silica as a support for amine-based CO2 adsorbents: Improvement in adsorption capacity and kinetics, Appl. Surf. Sci. 396 (2017) 1515–1519. [9] S.A. Anuar, W.N.R. Wan Isahak, M.S. Masdar, Carbon nanoflake hybrid for biohydrogen CO2 capture: Breakthrough adsorption test, Int. J. Energy Res. 44 (4) (2020) 3148–3159. [10] A.A. Azmi, M.A.A. Aziz, Mesoporous adsorbent for CO2 capture application under mild condition: A review, J. Environ. Chem. Eng. 7(2) (2019) 103022. [11] N. Gargiulo, F. Pepe, D. Caputo, CO2 adsorption by functionalized nanoporous materials: A review, J. Nanosci. Nanotechnol. 14 (2)(2014) 1811–1822. [12] Z.J. Zhang, S.K. Xian, Q.B. Xia, H.H. Wang, Z. Li, J. Li, Enhancement of CO2 adsorption and CO2/N2 selectivity on ZIF-8 via post synthetic modification, AIChE J. 59 (6)(2013) 2195–2206. [13] Y.C. Lin, Q.J. Yan, C.L. Kong, L. Chen, Polyethyleneimine incorporated metal–organic frameworks adsorbent for highly selective CO2 capture, Sci. Rep. 3 (2013) 1859. [14] Y.H. Fu, D.R. Sun, Y.J. Chen, R.K. Huang, Z.X. Ding, X.Z. Fu, Z.H. Li, An amine-functionalized titanium metal–organic framework photocatalyst with visible-light-induced activity for CO2 reduction, Angew. Chem. Int. Ed. 51 (14) (2012) 3364–3367. [15] D.M. Jiang, L.L. Keenan, A.D. Burrows, K.J. Edler, Synthesis and post-synthetic modification of MIL-101(Cr)-NH2 via a tandem diazotisation process, Chem. Commun. 48 (2012) 12053–12055. [16] R.L. Siegelman, T.M. McDonald, M.I. Gonzalez, J.D. Martell, P.J. Milner, J.A. Mason, A.H. Berger, A.S. Bhown, J.R. Long, Controlling cooperative CO2 adsorption in diamine-appended Mg2(dobpdc) metal–organic frameworks, J. Am. Chem. Soc. 139 (30) (2017) 10526–10538. [17] H.Y. Zhang, C. Yang, Q. Geng, H.L. Fan, B.J. Wang, M.M. Wu, Z. Tian, Adsorption of hydrogen sulfide by amine-functionalized metal organic framework (MOF-199): An experimental and simulation study, Appl. Surf. Sci. 497 (2019) 143815. [18] A.J. Emerson, A. Chahine, S.R. Batten, D.R. Turner, Synthetic approaches for the incorporation of free amine functionalities in porous coordination polymers for enhanced CO2 sorption, Coord. Chem. Rev. 365 (2018) 1–22. [19] C. Chen, J. Kim, W.S. Ahn, CO2 capture by amine-functionalized nanoporous materials: A review, Korean J. Chem. Eng. 31 (11)(2014) 1919–1934. [20] X. Wang, L.L. Chen, Q.J. Guo, Development of hybrid amine-functionalized MCM-41 sorbents for CO2 capture, Chem. Eng. J. 260 (2015) 573–581. [21] J.W. Hou, A.F. Sapnik, T.D. Bennett, Metal–organic framework gels and monoliths, Chem. Sci. 11 (2)(2020) 310–323. [22] L.Y. Wang, H. Xu, J.K. Gao, J.M. Yao, Q.C. Zhang, Recent progress in metal–organic frameworks-based hydrogels and aerogels and their applications, Coord. Chem. Rev. 398 (2019) 213016. [23] F. Zhao, W.X. Yang, Y. Han, X.L. Luo, W.Z. Tang, T.L. Yue, Z.H. Li, A straightforward strategy to synthesize supramolecular amorphous zirconium metal–organic gel for efficient Pb(II) removal, Chem. Eng. J. 407 (2021) 126744. [24] Y.F. Chen, X.Q. Huang, S.H. Zhang, S.Q. Li, S.J. Cao, X.K. Pei, J.W. Zhou, X. Feng, B. Wang, Shaping of metal–organic frameworks: From fluid to shaped bodies and robust foams, J. Am. Chem. Soc. 138 (34) (2016) 10810–10813. [25] D. Bazer-Bachi, L. Assié, V. Lecocq, B. Harbuzaru, V. Falk, Towards industrial use of metal–organic framework: Impact of shapingon the MOF properties, Powder Technol. 255 (2014) 52–59. [26] T. Tian, J. Velazquez-Garcia, T.D. Bennett, D. Fairen-Jimenez, Mechanically and chemically robust ZIF-8 monoliths with high volumetric adsorption capacity, J. Mater. Chem. A 3 (6) (2015) 2999–3005. [27] B.M. Connolly, M. Aragones-Anglada, J. Gandara-Loe, N.A. Danaf, D.C. Lamb, J.P. Mehta, D. Vulpe, S. Wuttke, J. Silvestre-Albero, P.Z. Moghadam, A.E.H. Wheatley, D. Fairen-Jimenez, Tuning porosity in macroscopic monolithic metal–organic frameworks for exceptional natural gas storage, Nat. Commun. 10 (2019) 2345. [28] Y.Y. Liu, Z.U. Wang, H.C. Zhou, Recent advances in carbon dioxide capture with metal–organic frameworks, Greenh. Gases: Sci. Technol. 2 (4) (2012) 239–259. [29] J.H. Cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti, S. Bordiga, K.P. Lillerud, A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability, J. Am. Chem. Soc. 130 (42) (2008) 13850–13851. [30] Z.G. Hu, D. Zhao, De facto methodologies toward the synthesisand scale-up production of UiO-66-type metal–organic frameworks and membrane materials, Dalton Trans. 44 (44) (2015) 19018–19040. [31] J.B. DeCoste, G.W. Peterson, H. Jasuja, T.G. Glover, Y.G. Huang, K.S. Walton, Stability and degradation mechanisms of metal–organic frameworks containing the Zr6O4(OH)4 secondary building unit, J. Mater. Chem. A 1 (18) (2013) 5642–5650. [32] B. Bueken, N. van Velthoven, T. Willhammar, T. Stassin, I. Stassen, D.A. Keen, G.V. Baron, J.F.M. Denayer, R. Ameloot, S. Bals, D.de Vos, T.D. Bennett, Gel-based morphological design of zirconium metal–organic frameworks, Chem. Sci. 8 (5) (2017) 3939–3948. [33] J.B. DeCoste, G.W. Peterson, Metal–organic frameworks for air purification of toxic chemicals, Chem. Rev. 114 (11) (2014) 5695–5727. [34] Y. Kong, X.D. Shen, S. Cui, M.H. Fan, Development of monolithic adsorbent via polymeric sol-gel processfor low-concentration CO2 capture, Appl. Energy 147 (2015) 308–317. [35] A. Grondein, D. Bélanger, Chemical modification of carbon powders with aminophenyl and aryl-aliphaticamine groups by reduction of in situ generated diazonium cations: Applicabilityof the grafted powder towards CO2 capture, Fuel 90 (8) (2011) 2684–2693. [36] Y. Kong, G.D. Jiang, Y. Wu, S. Cui, X.D. Shen, Amine hybrid aerogel for high-efficiency CO2 capture: Effect of amine loading and CO2 concentration, Chem. Eng. J. 306 (2016) 362–368. [37] R.Q. Zhong, X.F. Yu, W. Meng, J. Liu, C.X. Zhi, R.Q. Zou, Amine-grafted MIL-101(Cr) via double-solvent incorporation for synergistic enhancement of CO2 uptake and selectivity, ACS Sustain. Chem. Eng. 6 (12) (2018) 16493–16502. [38] M. Vahidi, A.M. Rashidi, A. Tavasoli, Preparation of piperazine-grafted amine-functionalized UiO-66 metal organic framework and its application for CO2 over CH4 separation, J. Iran. Chem. Soc.14 (10) (2017) 2247–2253. [39] H. Molavi, A. Eskandari, A. Shojaei, S.A. Mousavi, Enhancing CO2/N2 adsorption selectivity via post-synthetic modification of NH2-UiO-66(Zr), Microporous Mesoporous Mater. 257 (2018) 193–201. [40] Y.P. Ren, R.Y. Ding, H.R. Yue, S.Y. Tang, C.J. Liu, J.B. Zhao, W. Lin, B. Liang, Amine-grafted mesoporous copper silicates as recyclable solid amine sorbents for post-combustion CO2 capture, Appl. Energy 198 (2017) 250–260. [41] W.C. Wilfong, C.S. Srikanth, S.S.C. Chuang, In situ ATR and DRIFTS studies of the nature of adsorbed CO2 on tetraethylenepentamine films, ACS Appl. Mater. Interfaces 6 (16) (2014) 13617–13626. [42] R. Kishor, A.K. Ghoshal, APTES grafted ordered mesoporous silica KIT-6 for CO2 adsorption, Chem. Eng. J. 262 (2015) 882–890. [43] Z.L. Liu, Y. Teng, K. Zhang, H.G. Chen, Y.P. Yang, J. CO2 adsorption performance of different amine-based siliceous MCM-41 materials, J. Energy Chem. 24 (3) (2015) 322–330. [44] X.H. Wu, J. Lin, J.X. Xie, X.H. Zhao, D.D. Liu, Y. Xing, L.X. Xu, Salen–Mg-doped NH2–MIL-101(Cr) for effective CO2 adsorption under ambient conditions, Appl. Organomet. Chem. 34 (12) (2020) e5993. [45] C.H. Chen, N.J. Feng, Q.R. Guo, Z. Li, X. Li, J. Ding, L. Wang, H. Wan, G.F. Guan, Template-directed fabrication of MIL-101(Cr)/mesoporous silica composite: Layer-packed structure and enhanced performance for CO2 capture, J. Colloid Interface Sci. 513 (2018) 891–902. [46] J. Cheng, N. Liu, L.Q. Hu, Y.N. Li, Y.L. Wang, J.H. Zhou, Polyethyleneimine entwine thermally-treated Zn/Co zeolitic imidazolate frameworks to enhance CO2 adsorption, Chem. Eng. J. 364 (2019) 530–540. [47] J.M. Park, D.K. Yoo, S.H. Jhung, Selective CO2 adsorption over functionalized Zr-based metal organic framework under atmospheric or lower pressure: Contribution of functional groups to adsorption, Chem. Eng. J. 402 (2020) 126254. [48] S. Mutyala, S.M. Yakout, S.S. Ibrahim, M. Jonnalagadda, H. Mitta, Enhancement of CO2 capture and separationof CO2/N2 using post-synthetic modified MIL-100(Fe), New J. Chem. 43 (24) (2019) 9725–9731. |