[1] I. Amghizar, L.A. Vandewalle, K.M.V. Geem, G.B. Marin, New trends in olefin production, Engineering 3 (2) (2017) 171–178.Doi: 10.1016/J.ENG.2017.02.006 [2] S.S. Haghighi, M.R. Rahimpour, S. Raeissi, O. Dehghani, Investigation of ethylene production in naphtha thermal cracking plant in presence of steam and carbon dioxide, Chem. Eng. J. 228 (2013) 1158–1167.Doi: 10.1016/j.cej.2013.05.048 [3] J.M. Chen, B.Y. Yu, Y.M. Wei, Energy technology roadmap for ethylene industry in China, Appl. Energy 224 (2018) 160–174.Doi: 10.1016/j.apenergy.2018.04.051 [4] T. Wang, Z.C. Ye, X.J. Wang, Z.M. Li, W.L. Du, Improved distributed optimization algorithm and its application in energy saving of ethylene plant, Chem. Eng. Sci. 251 (2022) 117449.Doi: 10.1016/j.ces.2022.117449 [5] T. Ren, M. Patel, K. Blok, Olefins from conventional and heavy feedstocks: energy use in steam cracking and alternative processes, Energy 31 (4) (2006) 425–451.Doi: 10.1016/j.energy.2005.04.001 [6] I. Amghizar, J.N. Dedeyne, D.J. Brown, G.B. Marin, K.M. van Geem, Sustainable innovations in steam cracking: CO2 neutral olefin production, React. Chem. Eng. 5 (2) (2020) 239–257.Doi: 10.1039/c9re00398c [7] G.S. Guo, Y. Ren, Y.B. Yu, Z.W. Liao, B.B. Jiang, Y. Yang, G.J. He, W.J. Fang, J.D. Wang, Y.R. Yang, Hyperbranched poly(amidoamine) as an efficient macroinitiator for steam cracking of naphtha, Fuel 299 (2021) 120907.Doi: 10.1016/j.fuel.2021.120907 [8] X.X. Zhu, F.C. Chen, J. An, P. Zeng, L.Y. Xu, Development and industrialization of the ethylbenzene production technologies from dilute ethylene in FCC dry gas, Adv. Mater. Res. 233-235 (2011) 1708–1713.Doi: 10.4028/www.scientific.net/amr.233-235.1708 [9] J.L. Zhang, Q.C. Yang, Y.J. Fan, D.W. Zhang, J.H. Yu, Conceptual design and techno-economic analysis of a coproduction system for ethylene glycol and LNG from steel mill off-gases, Fuel 318 (2022) 123693.Doi: 10.1016/j.fuel.2022.123693 [10] Y.W. Wang, B. Yang, Z.Q. Liu, Z.Q. Liu, Q. Sun, A.X. Liu, X.X. Li, W.J. Lan, L.Y. Yang, X.Q. Guo, The hydrate-based gas separation of hydrogen and ethylene from fluid catalytic cracking dry gas in presence of Poly (sodium 4-styrenesulfonate), Fuel 275 (2020) 117895.Doi: 10.1016/j.fuel.2020.117895 [11] X.Y. Hou, J.S. Zhang, D.F. Li. Overview of C2 Recovery Technology in Refinery Dry Gas. Green Pet. Petrochem. 6 (01) (2021) 11-18. [12] Y.J. Li, H. Luo, Integration of light hydrocarbons cryogenic separation process in refinery based on LNG cold energy utilization, Chem. Eng. Res. Des. 93 (2015) 632–639.Doi: 10.1016/j.cherd.2014.04.009 [13] L.W. Zhang, G.J. Chen, C.Y. Sun, S.S. Fan, Y.M. Ding, X.L. Wang, L.Y. Yang, The partition coefficients of ethylene between hydrate and vapor for methane + ethylene + water and methane + ethylene + SDS + water systems, Chem. Eng. Sci. 60 (19) (2005) 5356–5362.Doi: 10.1016/j.ces.2005.05.014 [14] M.B. Yang, S.Y. Zeng, X. Feng, L. Zhao, Simulation-based modeling and optimization for refinery hydrogen network integration with light hydrocarbon recovery, Int. J. Hydrog. Energy 47 (7) (2022) 4662–4673.Doi: 10.1016/j.ijhydene.2021.11.069 [15] G.R. Yu, L. Zhang, I.A. Alhumaydhi, A.A. Abdeltawab, A.A. Bagabas, H.A. Al-Megren, S.S. Al-Deyab, X.C. Chen, Separation of propylene and propane by alkylimidazolium thiocyanate ionic liquids with Cu+ salt, Sep. Purif. Technol. 156 (2015) 356–362.Doi: 10.1016/j.seppur.2015.10.022 [16] T.L. Saleman, G. Li, T.E. Rufford, P.L. Stanwix, K.I. Chan, S.H. Huang, E.F. May, Capture of low grade methane from nitrogen gas using dual-reflux pressure swing adsorption, Chem. Eng. J. 281 (2015) 739–748.Doi: 10.1016/j.cej.2015.07.001 [17] X. Duan, Q. Zhang, J.F. Cai, Y. Yang, Y.J. Cui, Y.B. He, C.D. Wu, R. Krishna, B.L. Chen, G.D. Qian, A new metal–organic framework with potential for adsorptive separation of methane from carbon dioxide, acetylene, ethylene, and ethane established by simulated breakthrough experiments, J. Mater. Chem. A 2 (8) (2014) 2628.Doi: 10.1039/c3ta14454b [18] C.X. Xu, J. Zhang, H. Dinh, Q. Xu, Process synthesis of mixed refrigerant system for ethylene plants, Ind. Eng. Chem. Res. 56 (28) (2017) 7984–7999.Doi: 10.1021/acs.iecr.7b00111 [19] J. Wang, Y.L. He, Q.X. Zhu, Energy and production efficiency optimization of an ethylene plant considering process operation and structure, Ind. Eng. Chem. Res. 59 (3) (2020) 1202–1217.Doi: 10.1021/acs.iecr.9b05315 [20] X.G. Li, J. Wang, S. Cong, X.B. Luo, M.H. Wang, H. Li. Development and simulation of a novel oil absorption process for recovering ethylene from refinery dry gas. Chem. Eng. (China) 44 (02) (2016) 1-6. [21] Y.W. Wang, J.H. Zhang, X.Q. Guo, B. Chen, Q. Sun, A.X. Liu, C.Y. Sun, G.J. Chen, L.Y. Yang, Experiments and modeling for recovery of hydrogen and ethylene from fluid catalytic cracking (FCC) dry gas utilizing hydrate formation, Fuel 209 (2017) 473–489.Doi: 10.1016/j.fuel.2017.07.108 [22] H. Liu, L. Mu, B. Wang, B. Liu, J. Wang, X.X. Zhang, C.Y. Sun, J. Chen, M.L. Jia, G.J. Chen, Separation of ethylene from refinery dry gas via forming hydrate in w/o dispersion system, Sep. Purif. Technol. 116 (2013) 342–350.Doi: 10.1016/j.seppur.2013.06.008 [23] X.B. Luo, M.H. Wang, X.G. Li, Y. Li, C. Chen, H. Sui, Modelling and process analysis of hybrid hydration-absorption column for ethylene recovery from refinery dry gas, Fuel 158 (2015) 424–434.Doi: 10.1016/j.fuel.2015.05.035 [24] C.F. Song, Q.L. Liu, N. Ji, S. Deng, J. Zhao, Y. Kitamura, Natural gas purification by heat pump assisted MEA absorption process, Appl. Energy 204 (2017) 353–361.Doi: 10.1016/j.apenergy.2017.07.052 [25] X. Li, X.L. Geng, P.Z. Cui, J.W. Yang, Z.Y. Zhu, Y.L. Wang, D.M. Xu, Thermodynamic efficiency enhancement of pressure-swing distillation process via heat integration and heat pump technology, Appl. Therm. Eng. 154 (2019) 519–529.Doi: 10.1016/j.applthermaleng.2019.03.118 [26] N.G. Wang, Q. Ye, X.X. Ren, L.J. Chen, H.X. Zhang, Y.F. Fan, H. Cen, J. Zhong, Performance enhancement of heat pump with preheater-assisted pressure-swing distillation process, Ind. Eng. Chem. Res. 59 (10) (2020) 4742–4755.Doi: 10.1021/acs.iecr.9b06918 [27] H. Luo, C.S. Bildea, A.A. Kiss, Novel heat-pump-assisted extractive distillation for bioethanol purification, Ind. Eng. Chem. Res. 54 (7) (2015) 2208–2213.Doi: 10.1021/ie504459c [28] M.Q. Chen, N. Yu, L. Cong, J.X. Wang, M.Y. Zhu, L.Y. Sun, Design and control of a heat pump-assisted azeotropic dividing wall column for EDA/water separation, Ind. Eng. Chem. Res. 56 (34) (2017) 9770–9777.Doi: 10.1021/acs.iecr.7b02466 [29] X.X. Gao, Z.F. Ma, L.M. Yang, J.Q. Ma, Simulation and optimization of distillation processes for separating the methanol–chlorobenzene mixture with separate heat-pump distillation, Ind. Eng. Chem. Res. 52 (33) (2013) 11695–11701.Doi: 10.1021/ie401467r [30] S. Pandey, G.P. Rangaiah, Multiobjective optimization of cold-end separation process in an ethylene plant, Ind. Eng. Chem. Res. 52 (48) (2013) 17229–17240.Doi: 10.1021/ie4027764 [31] X. Zhou, Q. Zhai, C.L. Chen, H. Yan, X.B. Chen, H. Zhao, C.H. Yang, Technoeconomic analysis and life cycle assessment of five VGO processing pathways in China, Energy Fuels 33 (11) (2019) 12106–12120.Doi: 10.1021/acs.energyfuels.9b03253 [32] Q.Q. Chen, M. Lv, D.F. Wang, Z.Y. Tang, W. Wei, Y.H. Sun, Eco-efficiency assessment for global warming potential of ethylene production processes: a case study of China, J. Clean. Prod. 142 (2017) 3109–3116.Doi: 10.1016/j.jclepro.2016.10.156 [33] Y.M. Han, R.D. Zhou, Z.Q. Geng, J. Bai, B. Ma, J.Z. Fan, A novel data envelopment analysis cross-model integrating interpretative structural model and analytic hierarchy process for energy efficiency evaluation and optimization modeling: application to ethylene industries, J. Clean. Prod. 246 (2020) 118965.Doi: 10.1016/j.jclepro.2019.118965 [34] F.F. Shen, M.H. Wang, L.X. Huang, F. Qian, Exergy analysis and multi-objective optimisation for energy system: a case study of a separation process in ethylene manufacturing, J. Ind. Eng. Chem. 93 (2021) 394–406.Doi: 10.1016/j.jiec.2020.10.018 [35] F.M. Fábrega, J.S. Rossi, J.V.H. d'Angelo, Exergetic analysis of the refrigeration system in ethylene and propylene production process, Energy 35 (3) (2010) 1224–1231.Doi: 10.1016/j.energy.2009.11.001 [36] A. Palizdar, S.M. Sadrameli, Conventional and advanced exergoeconomic analyses applied to ethylene refrigeration system of an existing olefin plant, Energy Convers. Manag. 138 (2017) 474–485.Doi: 10.1016/j.enconman.2017.02.019 [37] B.M. Dai, H.F. Qi, S.C. Liu, Z.F. Zhong, H.L. Li, M.J. Song, M.Y. Ma, Z.L. Sun, Environmental and economical analyses of transcritical CO2 heat pump combined with direct dedicated mechanical subcooling (DMS) for space heating in China, Energy Convers. Manag. 198 (2019) 111317.Doi: 10.1016/j.enconman.2019.01.119 [38] R. Turton, R.C. Bailie, W.B. Whiting, J.A. Shaeiwitz, D. Bhattacharyya. Analysis, Synthesis and Design of Chemical Processes. Pearson Education Fourth Edition (2008). [39] J. Li, L.X. Li, R.C. Li, Z.K. Yang, Z.H. Ma, L.Y. Sun, N. Zhang, Investigation of multi-objective optimization for integrating design and control of ionic liquid-based extractive distillation, Chem. Eng. Res. Des. 170 (2021) 134–146.Doi: 10.1016/j.cherd.2021.04.002 [40] D. Xiang, P. Li, X.Y. Yuan, Energy consumption and CO2 emissions of petroleum coke-to-methanol with/without carbon capture using process modeling and life cycle analysis, Energy Convers. Manag. 248 (2021) 114823.Doi: 10.1016/j.enconman.2021.114823 [41] A.A. Burgess, D.J. Brennan, Application of life cycle assessment to chemical processes, Chem. Eng. Sci. 56 (8) (2001) 2589–2604.Doi: 10.1016/S0009-2509(00)00511-X [42] N. Zhao, F.Q. You, Toward carbon-neutral electric power systems in the New York State: a novel multi-scale bottom-up optimization framework coupled with machine learning for capacity planning at hourly resolution, ACS Sustainable Chem. Eng. 10 (5) (2022) 1805–1821.Doi: 10.1021/acssuschemeng.1c06612 [43] A.F. Abd Rashid, S. Yusoff, A review of life cycle assessment method for building industry, Renew. Sustain. Energy Rev. 45 (2015) 244–248.Doi: 10.1016/j.rser.2015.01.043 [44] M.B. Yang, X.Y. Tian, F.Q. You, Manufacturing ethylene from wet shale gas and biomass: comparative technoeconomic analysis and environmental life cycle assessment, Ind. Eng. Chem. Res. 57 (17) (2018) 5980–5998.Doi: 10.1021/acs.iecr.7b03731 [45] M.B. Yang, F.Q. You, Comparative techno-economic and environmental analysis of ethylene and propylene manufacturing from wet shale gas and naphtha, Ind. Eng. Chem. Res. 56 (14) (2017) 4038–4051.Doi: 10.1021/acs.iecr.7b00354 [46] L. Lv, G.B. Song, X.Y. Zhao, J.W. Chen, Environmental Burdens of China's Propylene manufacturing: comparative life-cycle assessment and scenario analysis, Sci. Total. Environ. 799 (2021) 149451.Doi: 10.1016/j.scitotenv.2021.149451 [47] X. Zhou, H. Yan, X. Feng, H. Zhao, Y.B. Liu, X.B. Chen, C.H. Yang, Enhancing the conversion of polycyclic aromatic hydrocarbons from naphthenic heavy oil: novel process design, comparative techno-economic analysis, and life cycle assessment, Ind. Eng. Chem. Res. 59 (45) (2020) 20086–20101.Doi: 10.1021/acs.iecr.0c03198 [48] G. Towler, R. Sinnott, Chemical engineering design: principles, practice, and economics of plant and process design, Elsevier 2nd ed (2013) 113-114. |