[1] G. Ayranci, M. Sahin, E.Ayranci, Volumetric properties of ascorbic acid (vitamin C) and thiamine hydrochloride (vitamin B1) in dilute HCl and in aqueous NaCl solutions at (283.15, 293.15, 298.15, 303.15, 308.15, and 313.15)K, J. Chem. Thermodyn. 39 (12) (2007) 1620–1631. [2] D.M. Bhattacharya, D.V. Kawadkar, C.P. Pandhurnekar, A.V. Wankhade, U.R. Pratap, S.P. Zodape, Investigation of volumetric and acoustic properties of procainamide hydrochloride in aqueous binary and (water+ amino acid) ternary mixtures at different temperatures, J. Chem. Eng. Data. 62 (2017) 4083. [3] M.R. Khatun, M.M. Islam, F.R. Rima, M.N. Islam, Issue editorial masthead, J. Chem. Eng. Data 61 (11) (2016) 102. [4] D.M. Bhattacharya, S.S. Dhondge, S.P.Zodape, Solvation behaviour of an antihelmintic drug in aqueous solutions of sodium chloride and glucose at different temperatures, J. Chem. Thermodyn. 101 (2016) 207–220. [5] M. Singla, H. Kumar, R.Jindal, Solvation behaviour of biologically active compounds in aqueous solutions of antibacterial drug amoxicillin at different temperatures, J. Chem. Thermodyn. 76 (2014) 100–115. [6] X.H. Xu, C.Y. Zhu, Y.G.Ma, Densities and viscosities of sugar alcohols in vitamin B6 aqueous solutions at (293.15 to 323.15) K, J. Chem. Eng. Data 60 (6) (2015) 1535–1543. [7] A. Mehrdad, A.H.Miri, Influence of 1-butyl-3-methyl imidazolium bromide, ionic liquid as co-solvent on aqueous solubility of acetaminophen, J. Mol. Liq. 221 (2016) 1162–1167. [8] M. Mokhtarpour, N. Basteholia, H. Shekaari, M.T.Zafarani-Moattar, Effect of choline-based ionic liquids as novel green solvents on the aqueous solubility enhancement and thermodynamic properties of acetaminophen, J. Mol. Liq. 306 (2020) 112504. [9] M. Petkovic, K.R. Seddon, L.P.N. Rebelo, C.S. Pereira, Ionic liquids: a pathway to environmental acceptability. Chem. Soc. Rev. 40 (2011) 1383. [10] H. Shekaari, M.T. Zafarani-Moattar, M. Mokhtarpour, S.Faraji, Exploring cytotoxicity of some choline-based deep eutectic solvents and their effect on the solubility of lamotrigine in aqueous media, J. Mol. Liq. 283 (2019) 834–842. [11] M. Khorsandi, H. Shekaari, M.Mokhtarpour, Measurement and correlation of coumarin solubility in aqueous solution of acidic deep eutectic solvents based on choline chloride, Fluid Phase Equilibria 524 (2020) 112788. [12] S. Golgoun, M. Mokhtarpour, H. Shekaari, Solubility enhancement of betamethasone, meloxicam and piroxicam by use of choline-based deep eutectic solvents. Pharm. Sci. 27 (2020) 86. [13] W. Jiang, H. Jia, H. Li, L. Zhu, R. Tao, W. Zhu, H. Li, S. Dai, Boric acid-based ternary deep eutectic solvent for extraction and oxidative desulfurization of diesel fuel. Green Chem. 21 (2019) 3074. [14] E.L. Smith, A.P. Abbott, K.S.Ryder, Deep eutectic solvents (DESs) and their applications, Chem. Rev. 114 (21) (2014) 11060–11082. [15] B.B. Hansen, S. Spittle, B. Chen, D. Poe, Y. Zhang, J.M. Klein, A. Horton, L. Adhikari, T. Zelovich, B.W. Doherty, A review of fundamentals and applications. Chem. Rev. 121 (2020) 1232. [16] Q.H. Zhang, K. De Oliveira Vigier, S. Royer, F.Jérôme, Deep eutectic solvents: Syntheses, properties and applications, Chem. Soc. Rev. 41 (21) (2012) 7108. [17] S.S. Dhondge, S.P. Zodape, D.V.Parwate, Volumetric and viscometric studies of some drugs in aqueous solutions at different temperatures, J. Chem. Thermodyn. 48 (2012) 207–212. [18] A. Pal, S.Soni, Volumetric properties of glycine in aqueous solutions of some sulfa drugs at (288.15, 298.15, and 308.15) K, J. Chem. Eng. Data 58 (1) (2013) 18–23. [19] V. Singh, S. Panda, H. Kaur, P.K. Banipal, R.L. Gardas, T.S.Banipal, Solvation behavior of monosaccharides in aqueous protic ionic liquid solutions: Volumetric, calorimetric and NMR spectroscopic studies, Fluid Phase Equilibria 421 (2016) 24–32. [20] D.R. Torres, L.H. Blanco, F. Martínez, E.F.Vargas, Apparent molal volumes of lidocaine–HCl and procaine–HCl in aqueous solution as a function of temperature, J. Chem. Eng. Data 52 (5) (2007) 1700–1703. [21] M. Mohan, P.K. Naik, T. Banerjee, V.V. Goud, S.Paul, Solubility of glucose in tetrabutylammonium bromide based deep eutectic solvents: Experimental and molecular dynamic simulations, Fluid Phase Equilibria 448 (2017) 168–177. [22] A. Bell, W. Madgin, Viscosities of aqueous solutions of amino-acids, with some conductivity values. J. Chem. Soc. (Resumed) (1947) 74. [23] M. Kikuchi, M. Sakurai, K.Nitta, Partial molar volumes and adiabatic compressibilities of amino acids in dilute aqueous solutions at 5, 15, 25, 35, and 45.degree.C, J. Chem. Eng. Data 40 (4) (1995) 935–942. [24] J. Ananthaswamy, G. Atkinson, Thermodynamics of concentrated electrolyte mixtures. 4. Pitzer-Debye-Hueckel limiting slopes for water from 0 to 100 ℃ and from 1 atm to 1 kbar. J. Chem. Eng. Data . 29 (1984) 81. [25] A. Pal, S.Kumar, Viscometric and volumetric studies of some amino acids in binary aqueous solutions of urea at various temperatures, J. Mol. Liq. 109 (1) (2004) 23–31. [26] M.T. Zafarani-Moattar, H. Shekaari, F.Ghaffari, Evaluation of solute-solvent interaction and phase separation for aqueous polymers solutions containing choline chloride/D-sucrose natural deep eutectic solvent through vapor-liquid equilibria, volumetric and acoustic studies, J. Chem. Thermodyn. 142 (2020) 105963. [27] M.R. Behboudi, M.T. Zafarani-Moattar, H. Shekaari, F.Ghaffari, Effect of choline-based ionic liquids on thermodynamic and transport properties of aqueous diphenhydramine hydrochloric acid solutions, J. Mol. Liq. 337 (2021) 116431. [28] K.L. Zhuo, Y.H. Liu, Q.F. Zhang, H.X. Liu, J.J.Wang, Volumetric properties of d-galactose in aqueous HCl solution at 278.15 to 318.15 K, J. Mol. Liq. 147 (3) (2009) 186–190. [29] M.A. Jamal, M.K. Khosa, M. Rashad, A. Mansha, S.Ali Raza Naqvi, Volumetric and acoustic behavior of sodium cyclamate in aqueous system from 293.15 K to 318.15 K, J. Solut. Chem. 45 (7) (2016) 1009–1020. [30] C.M. Romero, F.Negrete, Effect of temperature on partial molar volumes and viscosities of aqueous solutions of α-dl-Aminobutyric acid, dl-Norvaline anddl-Norleucine, Phys. Chem. Liq. 42 (3) (2004) 261–267. [31] Y. Maham, T.T. Teng, A.E. Mather, L.G.Hepler, Volumetric properties of (water + diethanolamine) systems, Can. J. Chem. 73 (9) (1995) 1514–1519. [32] G.M.Schwab, Gmelins handbuch der anorganischen Chemie, Zeitschrift Für Physikalische Chemie 54 (3_4) (1967) 222. [33] H. Shekaari, A. Kazempour, Z.Ghasedi-Khajeh, Structure-making tendency of ionic liquids in the aqueous d-glucose solutions, Fluid Phase Equilibria 316 (2012) 102–108. [34] M.M. Munde, N.Kishore, Volumetric properties of aqueous 2-chloroethanol solutions and volumes of transfer of some amino acids and peptides from water to aqueous 2-chloroethanol solutions, J. Solut. Chem. 32 (9) (2003) 791–802. [35] M.N. Roy, V.K. Dakua, B.Sinha, Partial molar volumes, viscosity B-coefficients, and adiabatic compressibilities of sodium molybdate in aqueous 1, 3-dioxolane mixtures from 303.15 to 323.15 K, Int. J. Thermophys. 28 (4) (2007) 1275–1284. [36] Z.N. Yan, R. Geng, B.X. Gu, Q. Pan, J.J.Wang, Densities, electrical conductances, and spectroscopic properties of glycyl dipeptide+ionic liquid ([C12mim]Br)+water mixtures at different temperatures, Fluid Phase Equilibria 367 (2014) 125–134. [37] T.S. Banipal, G. Singh, B.S.Lark, Partial Molar Volumes of Transfer of Some Amino Acids from Water to Aqueous Glycerol Solutions at 25℃. J. Solut. Chem. 30 (7) (2001) 657–670. [38] M.J. Iqbal, M.A.Chaudhry, Effect of temperature on volumetric and viscometric properties of some non-steroidal anti-inflammatory drugs in aprotic solvents, J. Chem. Thermodyn. 42 (8) (2010) 951–956. [39] A.K. Mishra, J.C.Ahluwalia, Apparent molal volumes of amino acids, N-acetylamino acids, and peptides in aqueous solutions, J. Phys. Chem. 88 (1) (1984) 86–92. [40] I. Bahadur, N.Deenadayalu, Apparent molar volume and apparent molar isentropic compressibility for the binary systems{methyltrioctylammoniumbis(trifluoromethylsulfonyl)imide+ethyl acetate or ethanol}at different temperatures under atmospheric pressure, Thermochimica Acta 566 (2013) 77–83. [41] T.J. Fortin, A. Laesecke, M. Freund, S.Outcalt, Advanced calibration, adjustment, and operation of a density and sound speed analyzer, J. Chem. Thermodyn. 57 (2013) 276–285. [42] H. Shekaari, M.T. Zafarani-matter, F. Ghaffari, Volumetric, Acoustic and Conductometric Studies of Acetaminophen in Aqueous Ionic Liquid, 1-Octyl-3-methylimidazolium Bromide at T= 293.15-308.15 K, Phys. Chem. Res. 412016119141. |