[1] Y.Z. Dong, Y.X. Liu, C.M. Hu, I.R. MacDonald, Y.C. Lu, Chronic oiling in global oceans, Science 376 (6599) (2022) 1300–1304. [2] D.W. Lu, T. Zhang, J. Ma, Ceramic membrane fouling during ultrafiltration of oil/water emulsions: Roles played by stabilization surfactants of oil droplets, Environ. Sci. Technol. 49 (7) (2015) 4235–4244. [3] H. Wu, C.Y. Sun, Y.Z. Huang, X.Y. Zheng, M. Zhao, S. Gray, Y.C. Dong, Treatment of oily wastewaters by highly porous whisker-constructed ceramic membranes: Separation performance and fouling models, Water Res. 211 (2022) 118042. [4] X.B. Zhu, A. Dudchenko, X.T. Gu, D. Jassby, Surfactant-stabilized oil separation from water using ultrafiltration and nanofiltration, J. Membr. Sci. 529 (2017) 159–169. [5] Q.L. Gu, T.C.A. Ng, Y.P. Bao, H.Y. Ng, S.C. Tan, J. Wang, Developing better ceramic membranes for water and wastewater Treatment: Where microstructure integrates with chemistry and functionalities, Chem. Eng. J. 428 (2022) 130456. [6] H.J. Tanudjaja, C.A. Hejase, V.V. Tarabara, A.G. Fane, J.W. Chew, Membrane-based separation for oily wastewater: A practical perspective, Water Res. 156 (2019) 347–365. [7] Z.M. He, Z.Y. Lyu, Q.L. Gu, L. Zhang, J. Wang, Ceramic-based membranes for water and wastewater treatment, Colloids Surf. A 578 (2019) 123513. [8] X.L. Wang, K. Sun, G.Q. Zhang, F.L. Yang, S.H. Lin, Y.C. Dong, Robust zirconia ceramic membrane with exceptional performance for purifying nano-emulsion oily wastewater, Water Res. 208 (2022) 117859. [9] X.L. Wang, Y.L. Li, H.T. Yu, F.L. Yang, C.Y. Tang, X. Quan, Y.C. Dong, High-flux robust ceramic membranes functionally decorated with nano-catalyst for emerging micro-pollutant removal from water, J. Membr. Sci. 611 (2020) 118281. [10] L. Zhu, W. Wang, P. Zhao, S.L. Wang, K. Yang, H.B. Shi, M. Xu, Y.C. Dong, Silicon carbide catalytic ceramic membranes with nano-wire structure for enhanced anti-fouling performance, Water Res. 226 (2022) 119209. [11] Y.C. Dong, H. Wu, F.L. Yang, S. Gray, Cost and efficiency perspectives of ceramic membranes for water treatment, Water Res. 220 (2022) 118629. [12] M.B. Asif, Z.H. Zhang, Ceramic membrane technology for water and wastewater treatment: A critical review of performance, full-scale applications, membrane fouling and prospects, Chem. Eng. J. 418 (2021) 129481. [13] S.Z.A. Bukhari, J.H. Ha, J. Lee, I.H. Song, Oxidation-bonded SiC membrane for microfiltration, J. Eur. Ceram. Soc. 38 (4) (2018) 1711–1719. [14] Z.Y. Luo, W. Han, X.J. Yu, W.Q. Ao, K.Q. Liu, In-situ reaction bonding to obtain porous SiC membrane supports with excellent mechanical and permeable performance, Ceram. Int. 45 (7) (2019) 9007–9016. [15] J.H. She, Z.Y. Deng, J. Daniel-doni, T. Ohji, Oxidation bonding of porous silicon carbide ceramics, J. Mater. Sci. 37 (17) (2002) 3615–3622. [16] Y. Kim, K. Min, J. Shim, D.J. Kim, Formation of porous SiC ceramics via recrystallization, J. Eur. Ceram. Soc. 32 (13) (2012) 3611–3615. [17] J.F. Zhang, X.N. Zhou, Q.A. Zhi, S. Zhao, X. Huang, N.L. Zhang, B. Wang, J.F. Yang, K. Ishizaki, Microstructure and mechanical properties of porous SiC ceramics by carbothermal reduction and subsequent recrystallization sintering, J. Asian Ceram. Soc. 8 (2) (2020) 255–264. [18] S.Q. Ding, Y.P. Zeng, D.L. Jiang, In-situ reaction bonding of porous SiC ceramics, Mater. Charact. 59 (2) (2008) 140–143. [19] R.J. He, N.P. Zhou, K.Q. Zhang, X.Q. Zhang, L. Zhang, W.Q. Wang, D.N. Fang, Progress and challenges towards additive manufacturing of SiC ceramic, J. Adv. Ceram. 10 (4) (2021) 637–674. [20] J.H. Eom, Y.W. Kim, S. Raju, Processing and properties of macroporous silicon carbide ceramics: A review, J. Asian Ceram. Soc. 1 (3) (2013) 220–242. [21] S.Z.A. Bukhari, J.H. Ha, J. Lee, I.H. Song, Fabrication and optimization of a clay-bonded SiC flat tubular membrane support for microfiltration applications, Ceram. Int. 43 (10) (2017) 7736–7742. [22] N. Kouras, A. Harabi, F. Bouzerara, L. Foughali, A. Policicchio, S. Stelitano, F. Galiano, A. Figoli, Macro-porous ceramic supports for membranes prepared from quartz sand and calcite mixtures, J. Eur. Ceram. Soc. 37 (9) (2017) 3159–3165. [23] H.A. Liu, J.Y. Liu, Z. Hong, S.X. Wang, X.C. Gao, X.H. Gu, Preparation of hollow fiber membranes from mullite particles with aid of sintering additives, J. Adv. Ceram. 10 (1) (2021) 78–87. [24] F. Han, C.N. Xu, W. Wei, F. Zhang, P. Xu, Z.X. Zhong, W.H. Xing, Corrosion behaviors of porous reaction-bonded silicon carbide ceramics incorporated with CaO, Ceram. Int. 44 (11) (2018) 12225–12232. [25] S.Q. Ding, S.M. Zhu, Y.P. Zeng, D.L. Jiang, Effect of Y2O3 addition on the properties of reaction-bonded porous SiC ceramics, Ceram. Int. 32 (4) (2006) 461–466. [26] T.L. Liu, C.E. Huang, H.J. Hu, C.Y. Shen, Effects of SDBS and ZrO2 additives on the microstructure and properties of silicon-bonded SiC porous ceramics, Ceram. Int. 46 (3) (2020) 2910–2914. [27] Y.H. Choi, Y.W. Kim, I.S. Han, S.K. Woo, Effect of alkaline earth metal oxide addition on flexural strength of porous mullite-bonded silicon carbide ceramics, J. Mater. Sci. 45 (24) (2010) 6841–6844. [28] N. Kayal, A. Dey, O. Chakrabarti, Incorporation of mullite as a bond phase into porous SiC by an infiltration technique, Mater. Sci. Eng. A 535 (2012) 222–227. [29] S.M. Zhu, S.Q. Ding, H.A. Xi, Q. Li, R.D. Wang, Preparation and characterization of SiC/cordierite composite porous ceramics, Ceram. Int. 33 (1) (2007) 115–118. [30] S.F. Liu, Y.P. Zeng, D.L. Jiang, Fabrication and characterization of cordierite-bonded porous SiC ceramics, Ceram. Int. 35 (2) (2009) 597–602. [31] Z.H. Luo, Jiang, J.X. Zhang, Q.L. Lin, Z.M. Chen, Z.R. Huang, Joining of sintered silicon carbide ceramics using sodium borosilicate glass as the solder, Int. J. Appl. Ceram. Technol. 9 (4) (2012) 742–750. [32] Y.L. Wei, S.H. Cheng, W.J. Chen, Y.H. Lu, K. Chen, P.C. Wu, Influence of various sodium salt species on formation mechanism of lightweight aggregates made from coal fly ash-based material, Constr. Build. Mater. 239 (2020) 117890. [33] Y. Yang, F. Han, W.Q. Xu, Y.X. Wang, Z.X. Zhong, W.H. Xing, Low-temperature sintering of porous silicon carbide ceramic support with SDBS as sintering aid, Ceram. Int. 43 (3) (2017) 3377–3383. [34] Q. Jiang, J. Zhou, Y. Miao, S.R. Yang, M. Zhou, Z.X. Zhong, W.H. Xing, Lower-temperature preparation of SiC ceramic membrane using zeolite residue as sintering aid for oil-in-water separation, J. Membr. Sci. 610 (2020) 118238. [35] Y. Yang, W.Q. Xu, F. Zhang, Z.X. Low, Z.X. Zhong, W.H. Xing, Preparation of highly stable porous SiC membrane supports with enhanced air purification performance by recycling NaA zeolite residue, J. Membr. Sci. 541 (2017) 500–509. [36] Q. Jiang, Y.L. Xie, L.Q. Ji, Z.X. Zhong, W.H. Xing, Low-temperature sintering of a porous SiC ceramic filter using water glass and zirconia as sintering aids, Ceram. Int. 47 (18) (2021) 26125–26133. [37] Z.H. Huang, D.C. Jia, Y. Zhou, Y.G. Liu, A new sintering additive for silicon carbide ceramic, Ceram. Int. 29 (1) (2003) 13–17. [38] E. Eray, V.M. Candelario, V. Boffa, Ceramic processing of silicon carbide membranes with the aid of aluminum nitrate nonahydrate: Preparation, characterization, and performance, Membranes 11 (9) (2021) 714. [39] C.N. Xu, C. Xu, F. Han, F. Zhang, W. Wei, Z.X. Zhong, W.H. Xing, Fabrication of high performance macroporous tubular silicon carbide gas filters by extrusion method, Ceram. Int. 44 (15) (2018) 17792–17799. [40] R.W. Rice, Comparison of stress concentration versus minimum solid area based mechanical property-porosity relations, J. Mater. Sci. 28 (8) (1993) 2187–2190. [41] N.P. Xu, W.X. Li, Y.J. Zhao, W.H. Xing, J. Shi, Theory and method of application-oriented ceramic membranes design (i) simulation of relation between membrane permeability and micro-structure, J. Chem. Ind. Eng. China 54 (9) (2003) 1284–1289. [42] A. Schepers, H. Milsch, Dissolution-precipitation reactions in hydrothermal experiments with quartz-feldspar aggregates, Contrib. Mineral. Petrol. 165 (1) (2013) 83–101. [43] G. Sarriegui, J.M. Martín, N. Burgos, M. Ipatov, A.P. Zhukov, J. Gonzalez, Effect of neodymium content and niobium addition on grain growth of Nd-Fe-B powders produced by gas atomization, Mater. Charact. 172 (2021) 110844. [44] J.S. Han, G.H. Li, H.N. Gao, S.J. Chen, L. Tian, L. Yuan, Foaming mechanisms of different foaming agents and their effects on the microstructures of porous magnesia ceramics, J. Aust. Ceram. Soc. 56 (3) (2020) 1005–1011. [45] Z.Y. Luo, W. Han, K.Q. Liu, W.Q. Ao, K.K. Si, Influence of bonding phases on properties of in-situ bonded porous SiC membrane supports, Ceram. Int. 46 (7) (2020) 8536–8542. [46] A.I. Bortun, L.N. Bortun, A. Clearfield, Hydrothermal synthesis of sodium zirconium silicates and characterization of their properties, Chem. Mater. 9 (8) (1997) 1854–1864. [47] R.B. de Paula Miranda, R. Borges, J. Marchi, N.B. de Lima, P.F. Cesar, Microstructure and flexural strength of the Y: TZP/BG composite, Int. J. Appl. Ceram. Technol. 16 (5) (2019) 1979–1988. [48] R. Chaim, On the kinetics of liquid-assisted densification during flash sintering of ceramic nanoparticles, Scr. Mater. 158 (2019) 88–90. [49] F. Han, Z.X. Zhong, F. Zhang, W.H. Xing, Y.Q. Fan, Preparation and characterization of SiC whisker-reinforced SiC porous ceramics for hot gas filtration, Ind. Eng. Chem. Res. 54 (1) (2015) 226–232. [50] D. Hotza, M. Di Luccio, M. Wilhelm, Y. Iwamoto, S. Bernard, J.C. Diniz da Costa, Silicon carbide filters and porous membranes: A review of processing, properties, performance and application, J. Membr. Sci. 610 (2020) 118193. [51] M. Zhang, D.X. Li, Y.Z. Hong, Z.B. Niu, Z.H. Yang, D.C. Jia, Y. Zhou, Study on the oxygen diffusion in the oxide layers of SiBCN ceramics by SIMS, J. Eur. Ceram. Soc. 42 (4) (2022) 1341–1347. [52] M. Salmeron, H. Bluhm, M. Tatarkhanov, G. Ketteler, T.K. Shimizu, A. Mugarza, X.Y. Deng, T. Herranz, S. Yamamoto, A. Nilsson, Water growth on metals and oxides: Binding, dissociation and role of hydroxyl groups, Faraday Discuss. 141 (2009) 221–229;discussion 309–346. [53] Q. Jiang, Y.X. Wang, Y.L. Xie, M. Zhou, Q.L. Gu, Z.X. Zhong, W.H. Xing, Silicon carbide microfiltration membranes for oil-water separation: Pore structure-dependent wettability matters, Water Res. 216 (2022) 118270. [54] Y.M. Lin, G.C. Rutledge, Separation of oil-in-water emulsions stabilized by different types of surfactants using electrospun fiber membranes, J. Membr. Sci. 563 (2018) 247–258. [55] Q. Gu, M. Kotobuki, C.H. Kirk, M. He, G.J.H. Lim, T.C.A. Ng, L. Zhang, H.Y. Ng, J. Wang, Overcoming the trade-off between water permeation and mechanical strength of ceramic membrane supports by interfacial engineering, ACS Appl. Mater. Interfaces 13 (24) (2021) 29199–29211. [56] M. Xu, C.X. Xu, K.P. Rakesh, Y.G. Cui, J. Yin, C.L. Chen, S.L. Wang, B.C. Chen, L. Zhu, Hydrophilic SiC hollow fiber membranes for low fouling separation of oil-in-water emulsions with high flux, RSC Adv. 10 (8) (2020) 4832–4839. [57] M.C. Fraga, S. Sanches, J.G. Crespo, V.J. Pereira, Assessment of a new silicon carbide tubular honeycomb membrane for treatment of olive mill wastewaters, Membranes 7 (1) (2017) 12. [58] L.P. Bessa, E. de Paulo Ferreira, V.L. Cardoso, M.H.M. Reis, Air-sintered silicon (Si)-bonded silicon carbide (SiC) hollow fiber membranes for oil/water separation, J. Eur. Ceram. Soc. 42 (2) (2022) 402–411. |