[1] H.Q. Chu, X.Q. Liu, J.Y. Ma, T. Li, H.F. Fan, X.F. Zhou, Y.L. Zhang, E.C. Li, X.W. Zhang, Two-stage aNOxic-oxic (A/O) system for the treatment of coking wastewater:Full-scale performance and microbial community analysis, Chem. Eng. J. 417(2021)129204. [2] P.W. Han, C.H. Xu, Y.M. Wang, C.L. Sun, H.Z. Wei, H.B. Jin, Y. Zhao, L. Ma, The high catalytic activity and strong stability of 3% Fe/AC catalysts for catalytic wet peroxide oxidation of m-cresol:The role of surface functional groups and FeOx particles, Chin. J. Chem. Eng. 44(2022)105-114. [3] Z.S. Ncanana, V.S.R. Rajasekhar Pullabhotla, Oxidative degradation of m-cresol using ozone in the presence of pure γ-Al2O3, SiO2 and V2O5 catalysts, J. Environ. Chem. Eng. 7(3)(2019)103072. [4] J. Carbajo, A. Bahamonde, M. Faraldos, Photocatalyst performance in wastewater treatment applications:Towards the role of TiO2 properties, Mol. Catal. 434(2017)167-174. [5] W.X. Zhang, L.H. Ding, J.Q. Luo, M.Y. Jaffrin, B. Tang, Membrane fouling in photocatalytic membrane reactors (PMRs) for water and wastewater treatment:A critical review, Chem. Eng. J. 302(2016)446-458. [6] S.F. Tang, Z.T. Wang, D.L. Yuan, C. Zhang, Y.D. Rao, Z.B. Wang, K. Yin, Ferrous ion-tartaric acid chelation promoted calcium peroxide fenton-like reactions for simulated organic wastewater treatment, J. Clean. Prod. 268(2020)122253. [7] X.H. Li, S. Chen, I. Angelidaki, Y.F. Zhang, Bio-electro-Fenton processes for wastewater treatment:Advances and prospects, Chem. Eng. J. 354(2018)492-506. [8] N.K. Pandey, H.B. Li, L. Chudal, B. Bui, E. Amador, M.B. Zhang, H.M. Yu, M.L. Chen, X. Luo, W. Chen, Exploration of copper-cysteamine nanoparticles as an efficient heterogeneous Fenton-like catalyst for wastewater treatment, Mater. Today Phys. 22(2022)100587. [9] L.L. Qian, S.Z. Wang, D.H. Xu, Y. Guo, X.Y. Tang, L.S. Wang, Treatment of municipal sewage sludge in supercritical water:A review, Water Res. 89(2016)118-131. [10] X.D. Tan, H.Q. Li, X.R. Li, W.J. Sun, C.Y. Jin, L.L. Chen, H.Z. Wei, C.L. Sun, A novel isophorone wastewater treatment technology-wet electrocatalytic oxidation and its degradation mechanism study, J. Hazard. Mater. 389(2020)122035. [11] T. Hammedi, M. Triki, M.G. Alvarez, R.J. Chimentao, Z. Ksibi, A. Ghorbel, J. Llorca, F. Medina, Total degradation of p-hydroxybenzoic acid by Ru-catalysed wet air oxidation:A model for wastewater treatment, Environ.. Chem. Lett. 13(4)(2015)481-486. [12] W.L. Shi, Y.N. Liu, W. Sun, Y.Z. Hong, X.Y. Li, X. Lin, F. Guo, J.Y. Shi, Improvement of synergistic effect photocatalytic/peroxymonosulfate activation for degradation of amoxicillin using carbon dots anchored on rod-like CoFe2O4, Chin. J. Chem. Eng. 52(2022)136-145. [13] L. Yang, Y. Jiao, D.Y. Jia, Y.Z. Li, C.H. Liao, Role of oxygen vacancies and Sr sites in SrCo0.8Fe0.2O3 perovskite on efficient activation of peroxymonosulfate towards the degradation of aqueous organic pollutants, Chin. J. Chem. Eng. 40(2021)269-277. [14] J.H. Wei, F. Li, L.N. Zhou, D.D. Han, J.B. Gong, Strategies for enhancing peroxymonosulfate activation by heterogenous metal-based catalysis:A review, Chin. J. Chem. Eng. 50(2022)12-28. [15] C.X. Yu, Z.K. Xiong, H.Y. Zhou, P. Zhou, H. Zhang, R.F. Huang, G. Yao, B. Lai, Marriage of membrane filtration and sulfate radical-advanced oxidation processes (SR-AOPs) for water purification:Current developments, challenges and prospects, Chem. Eng. J. 433(2022)133802. [16] Y.J. Zhang, Q. Yang, J. Liang, Y.S. Luo, Q. Liu, Y.C. Yang, X.P. Sun, Fe-glycerate microspheres as a heterogeneous catalyst to activate peroxymonosulfate for efficient degradation of methylene blue, J. Phys. Chem. Solids 169(2022)110893. [17] J.L. Yu, P.E. Savage, Phenol oxidation over CuO/Al2O3 in supercritical water, Appl. Catal. B 28(3-4)(2000)275-288. [18] Y.H. Cao, B. Li, G.Y. Zhong, Y.H. Li, H.J. Wang, H. Yu, F. Peng, Catalytic wet air oxidation of phenol over carbon nanotubes:Synergistic effect of carboxyl groups and edge carbons, Carbon 133(2018)464-473. [19] X.H. Tan, J. Bai, J.Y. Zheng, Y. Zhang, J.H. Li, T.S. Zhou, L.G. Xia, Q.J. Xu, B.X. Zhou, Photocatalytic fuel cell based on sulfate radicals converted from sulfates in situ for wastewater treatment and chemical energy utilization, Catal. Today 335(2019)485-491. [20] Q.X. Zhao, Q.M. Mao, Y.Y. Zhou, J.H. Wei, X.C. Liu, J.Y. Yang, L. Luo, J.C. Zhang, H. Chen, H.B. Chen, L. Tang, Metal-free carbon materials-catalyzed sulfate radicalbased advanced oxidation processes:A review on heterogeneous catalysts and applications, Chemosphere 189(2017)224-238. [21] Q. Yang, Y.C. Yang, Y.J. Zhang, L.C. Zhang, S.J. Sun, K. Dong, Y.S. Luo, J.Y. Wu, X. W. Kang, Q. Liu, M.S. Hamdy, X.P. Sun, Highly efficient activation of peroxymonosulfate by biomass juncus derived carbon decorated with cobalt nanoparticles for the degradation of ofloxacin, Chemosphere 311(2023)137020. [22] Q. Yang, Y.J. Zhang, J. Liang, Y.S. Luo, Q. Liu, Y.C. Yang, X.P. Sun, Facile hydrothermal synthesis of co-glycerate as an efficient peroxymonosulfate activator for rhodamine B degradation, Colloids Surf. A 648(2022)129239. [23] L. Ling, D.P. Zhang, C. Fan, C. Shang, A Fe (II)/citrate/UV/PMS process for carbamazepine degradation at a very low Fe (II)/PMS ratio and neutral pH:The mechanisms, Water Res. 124(2017)446-453. [24] B. Sheng, F. Yang, Y.H. Wang, Z.H. Wang, Q. Li, Y.G. Guo, X.Y. Lou, J.S. Liu, Pivotal roles of MoS2 in boosting catalytic degradation of aqueous organic pollutants by Fe (II)/PMS, Chem. Eng. J. 375(2019)121989. [25] X.H. Long, Z.K. Xiong, R.F. Huang, Y.H. Yu, P. Zhou, H. Zhang, G. Yao, B. Lai, Sustainable Fe (III)/Fe (II) cycles triggered by co-catalyst of weak electrical current in Fe (III)/peroxymonosulfate system:Collaboration of radical and nonradical mechanisms, Appl. Catal. B 317(2022)121716. [26] J.J. Zhao, H.X. Wei, P.S. Liu, A.R. Zhou, X. Lin, J. Zhai, Activation of peroxymonosulfate by metal-organic frameworks derived Co1+xFe2-xO4 for organic dyes degradation:A new insight into the synergy effect of Co and Fe, J. Environ. Chem. Eng. 9(4)(2021)105412. [27] H.X. Li, Y.Z. Yao, J. Zhang, J. Du, S.D. Xu, C.H. Wang, D. Zhang, J.H. Tang, H.T. Zhao, J. Zhou, Degradation of phenanthrene by peroxymonosulfate activated with bimetallic metal-organic frameworks:Kinetics, mechanisms, and degradation products, Chem. Eng. J. 397(2020)125401. [28] Y. Wang, L. Wu, Y.R. Zhou, Y.L. Zhang, S.P. Sun, W. Duo Wu, X.N. Wang, Z.X. Wu, Ternary FeS/c-Fe2O3@N/S-doped carbon nanohybrids dispersed in an ordered mesoporous silica for efficient peroxymonosulfate activation, Chem. Eng. J. 435(2022)135124. [29] L.M. Yang, W.D. Chen, C.H. Sheng, H.L. Wu, N.T. Mao, H. Zhang, Fe/N-codoped carbocatalysts loaded on carbon cloth (CC) for activating peroxymonosulfate (PMS) to degrade methyl orange dyes, Appl. Surf. Sci. 549(2021)149300. [30] U. Jeong, H. Kim, S. Ramesh, N.A. Dogan, S. Wongwilawan, S. Kang, J. Park, E.S. Cho, C.T. Yavuz, Rapid access to ordered mesoporous carbons for chemical hydrogen storage, Angew. Chem. Int. Ed. 60(41)(2021)22478-22486. [31] Z.C. Luo, Z.Y. Yin, J.Q. Yu, Y. Yan, B. Hu, R.F. Nie, A.F. Kolln, X. Wu, R.K. Behera, M.D. Chen, L. Zhou, F.D. Liu, B. Wang, W.Y. Huang, S. Zhang, L. Qi, General synthetic strategy to ordered mesoporous carbon catalysts with single-atom metal sites for electrochemical CO2 reduction, Small 18(16)(2022)2270078. [32] D.D. He, K. Zhu, J. Huang, Y.Q. Shen, L.L. Lei, H.M. He, W.J. Chen, N, S co-doped magnetic mesoporous carbon nanosheets for activating peroxymonosulfate to rapidly degrade tetracycline:Synergistic effect and mechanism, J. Hazard. Mater. 424(2022)127569. [33] G.L. Wang, S. Chen, X. Quan, H.T. Yu, Y.B. Zhang, Enhanced activation of peroxymonosulfate by nitrogen doped porous carbon for effective removal of organic pollutants, Carbon 115(2017)730-739. [34] Y.B. Wang, M. Liu, X. Zhao, D. Cao, T. Guo, B. Yang, Insights into heterogeneous catalysis of peroxymonosulfate activation by boron-doped ordered mesoporous carbon, Carbon 135(2018)238-247. [35] Y. Gao, T.W. Wu, C.D. Yang, C. Ma, Z.Y. Zhao, Z.H. Wu, S.J. Cao, W. Geng, Y. Wang, Y.Y. Yao, Y.N. Zhang, C. Cheng, Activity trends and mechanisms in peroxymonosulfate-assisted catalytic production of singlet oxygen over atomic metal-N-C catalysts, Angew. Chem. Int. Ed. 60(41)(2021)22513-22521. [36] H.J. Zhang, H.H. Tao, Y. Jiang, Z. Jiao, M.H. Wu, B. Zhao, Ordered CoO/CMK-3 nanocomposites as the anode materials for lithium-ion batteries, J. Power Sources 195(9)(2010)2950-2955. [37] V.K. Gupta, A. Nayak, Cadmium removal and recovery from aqueous solutions by novel adsorbents prepared from orange peel and Fe2O3 nanoparticles, Chem. Eng. J. 180(2012)81-90. [38] Y.J. Zhang, Q. Yang, L.C. Yue, Q. Liu, Y.S. Luo, J.Y. Wu, X.W. Kang, S.J. Sun, Y.C. Yang, X.P. Sun, Biomass juncus derived carbon modified with Fe3O4 nanoparticles toward activating peroxymonosulfate for efficient degradation of tetracycline, J. Water Process. Eng. 51(2023)103324. [39] S. Jun, S.H. Joo, R. Ryoo, M. Kruk, M. Jaroniec, Z. Liu, T. Ohsuna, O. Terasaki, Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure, J. Am. Chem. Soc. 122(43)(2000)10712-10713. [40] A. Carrero, J. Calles, L. García-Moreno, A. Vizcaíno, Production of renewable hydrogen from glycerol steam reforming over bimetallic Ni-(Cu, Co, Cr) catalysts supported on SBA-15 silica, Catalysts 7(12)(2017)55. [41] P. Arab, A. Badiei, A. Koolivand, G. Mohammadi Ziarani, Direct hydroxylation of benzene to phenol over Fe3O4 supported on nanoporous carbon, Chin. J. Catal. 32(1-2)(2011)258-263. [42] H. Huwe, M. Fröba, Synthesis and characterization of transition metal and metal oxide nanoparticles inside mesoporous carbon CMK-3, Carbon 45(2)(2007)304-314. [43] C.S. Feng, C. Chen, Y. Zhu, Q. Cao, C. Chen, C.Y. Jiang, Y.P. Wang, Degradation of ofloxacin using peroxymonosulfate activated by nitrogen-rich graphitized carbon microspheres:Structure and performance controllable study, J. Environ. Sci. 99(2021)10-20. [44] M.Z. Li, C.L. Yan, R. Ramachandran, Y.C. Lan, H. Dai, H.Q. Shan, X.C. Meng, D.H. Cui, F. Wang, Z.X. Xu, Non-peripheral octamethyl-substituted cobalt phthalocyanine nanorods supported on N-doped reduced graphene oxide achieve efficient electrocatalytic CO2 reduction to CO, Chem. Eng. J. 430(2022)133050. [45] D.P. Xue, H.C. Xia, W.F. Yan, J.N. Zhang, S.C. Mu, Defect engineering on carbonbased catalysts for electrocatalytic CO2 reduction, Nano Micro Lett. 13(1)(2020)1-23. [46] K. Dong, J. Liang, Y.Y. Wang, Z.Q. Xu, Q. Liu, Y.L. Luo, T.S. Li, L. Li, X.F. Shi, A.M. Asiri, Q. Li, D.W. Ma, X.P. Sun, Honeycomb carbon nanofibers:A superhydrophilic O2-Entrapping electrocatalyst enables ultrahigh mass activity for the two-electron oxygen reduction reaction, Angew. Chem. Int. Ed. 60(19)(2021)10583-10587. [47] S.L. Huo, X. Song, Y.B. Zhao, W. Ni, H. Wang, K.X. Li, Insight into the significant contribution of intrinsic carbon defects for the high-performance capacitive desalination of brackish water, J. Mater. Chem. A 8(38)(2020)19927-19937. [48] Y. Wang, L.P. Huang, Y.Q. Liu, D.C. Wei, H.L. Zhang, H. Kajiura, Y.M. Li, Minimizing purification-induced defects in single-walled carbon nanotubes gives films with improved conductivity, Nano Res. 2(11)(2009)865-871. [49] Z.Y. Lin, G. Waller, Y. Liu, M.L. Liu, C.P. Wong, Facile synthesis of nitrogendoped graphene via pyrolysis of graphene oxide and urea, and its electrocatalytic activity toward the oxygen-reduction reaction, Adv. Energy Mater. 2(7)(2012)884-888. [50] J.W. Lang, X.B. Yan, W.W. Liu, R.T. Wang, Q.J. Xue, Influence of nitric acid modification of ordered mesoporous carbon materials on their capacitive performances in different aqueous electrolytes, J. Power Sources 204(2012)220-229. [51] H. Zhang, H.N. Guo, A.Y. Li, X.Y. Chang, S. Liu, D. Liu, Y.J. Wang, F. Zhang, H.T. Yuan, High specific surface area porous graphene grids carbon as anode materials for sodium ion batteries, J. Energy Chem. 31(2019)159-166. [52] T. Yamashita, P. Hayes, Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials, Appl. Surf. Sci. 254(8)(2008)2441-2449. [53] T. Zhang, J.D. Wu, Z. Wang, Z. Wei, J.H. Liu, X.Z. Gong, Transfer of molecular oxygen and electrons improved by the regulation of C-N/C=O for highly efficient 2e-ORR, Chem. Eng. J. 433(2022)133591. [54] M.L. Sun, J.L. Peng, P. Zhou, C.S. He, Y. Du, Z.C. Pan, S.J. Su, F. Dong, Y. Liu, B. Lai, Insights into peroxymonosulfate activation under visible light:Sc2O3@C3N4 mediated photoexcited electron transfer, Chem. Eng. J. 435(2022)134836. [55] C.H. Liu, Y. Wu, K.A. Sun, J.J. Fang, A.J. Huang, Y. Pan, W.C. Cheong, Z.W. Zhuang, Z.B. Zhuang, Q.H. Yuan, H.L. Xin, C. Zhang, J.W. Zhang, H. Xiao, C. Chen, Y.D. Li, Constructing FeN4/graphitic nitrogen atomic interface for high-efficiency electrochemical CO2 reduction over a broad potential window, Chem 7(5)(2021)1297-1307. [56] C.Y. Duan, M.L. Ding, Y. Feng, M.J. Cao, J.F. Yao, ZIF-L-derived ZnO/N-doped carbon with multiple active sites for efficient catalytic CO2 cycloaddition, Sep. Purif. Technol. 285(2022)120359. [57] L.J. Peng, Y.N. Shang, B.Y. Gao, X. Xu, Co3O4 anchored in N, S heteroatom codoped porous carbons for degradation of organic contaminant:Role of pyridinic N-Co binding and high tolerance of chloride, Appl. Catal. B 282(2021)119484. [58] S.Z. Wang, J.L. Wang, Peroxymonosulfate activation by Co9S8@S and N co-doped biochar for sulfamethoxazole degradation, Chem. Eng. J. 385(2020)123933. [59] X.G. Duan, H.Q. Sun, S.B. Wang, Metal-free carbocatalysis in advanced oxidation reactions, Acc. Chem. Res. 51(3)(2018)678-687. [60] Y.W. Gao, T. Li, Y. Zhu, Z.H. Chen, J.Y. Liang, Q.Y. Zeng, L. Lyu, C. Hu, Highly nitrogen-doped porous carbon transformed from graphitic carbon nitride for efficient metal-free catalysis, J. Hazard. Mater. 393(2020)121280. [61] Z.Y. Zhu, H.F. Tang, Y. Du, Y.F. Wei, Y.Q. Chen, W.J. Yang, D.Y. Zhang, Z.R. Li, C.B. Liu, Filter-membrane treatment of continuous-flow tetracycline through photocatalysis-assisted peroxydisulfate oxidation, AlChE. J. 68(6)(2022) -17654. [62] Z. Boutamine, O. Hamdaoui, S. Merouani, Probing the radical chemistry and the reaction zone during the sono-degradation of endocrine disruptor 2-pheNOxyethanol in water, Ultrason. Sonochem. 41(2018)521-526. [63] S.S. Liu, X. Zhao, Y.B. Wang, H.X. Shao, M. Qiao, Y. Wang, S. Zhao, Peroxymonosulfate enhanced photoelectrocatalytic degradation of phenol activated by Co3O4 loaded carbon fiber cathode, J. Catal. 355(2017)167-175. [64] S.Q. Liu, Z.C. Zhang, F. Huang, Y.Z. Liu, L. Feng, J. Jiang, L.Q. Zhang, F. Qi, C. Liu, Carbonized polyaniline activated peroxymonosulfate (PMS) for phenol degradation:Role of PMS adsorption and singlet oxygen generation, Appl. Catal. B 286(2021)119921. [65] Y. Feng, C.Z. Liao, L.J. Kong, D.L. Wu, Y.M. Liu, P.H. Lee, K. Shih, Facile synthesis of highly reactive and stable Fe-doped g-C3N4 composites for peroxymonosulfate activation:A novel nonradical oxidation process, J. Hazard. Mater. 354(2018)63-71. [66] C.X. Li, C.B. Chen, Y.J. Wang, X.Z. Fu, S. Cui, J.Y. Lu, J. Li, H.Q. Liu, W.W. Li, T.C. Lau, Insights on the pH-dependent roles of peroxymonosulfate and chlorine ions in phenol oxidative transformation, Chem. Eng. J. 362(2019)570-575. [67] Y. Lei, C.S. Chen, J. Ai, H. Lin, Y.H. Huang, H. Zhang, Selective decolorization of cationic dyes by peroxymonosulfate:Non-radical mechanism and effect of chloride, RSC Adv. 6(2)(2016)866-871. [68] X. He, K.E. O'Shea, Selective oxidation of H1-antihistamines by unactivated peroxymonosulfate (PMS):Influence of inorganic anions and organic compounds, Water Res. 186(2020)116401. [69] Y. Liu, H.G. Guo, Y.L. Zhang, X. Cheng, P. Zhou, J. Deng, J.Q. Wang, W. Li, Highly efficient removal of trimethoprim based on peroxymonosulfate activation by carbonized resin with Co doping:Performance, mechanism and degradation pathway, Chem. Eng. J. 356(2019)717-726. [70] Y.K. Liu, T. Qiu, Y.L. Wu, S.Y. Wang, M. Liu, W.B. Dong, Remediation of soil contaminated with ibuprofen by persulfate activated with Gallic acid and ferric iron, Chem. Eng. J. 426(2021)127653. [71] M.S. Alam, B.S.M. Rao, E. Janata, OH reactions with aliphatic alcohols:Evaluation of kinetics by direct optical absorption measurement. A pulse radiolysis study, Radiat. Phys. Chem. 67(6)(2003)723-728. [72] P. Liang, C. Zhang, X.G. Duan, H.Q. Sun, S.M. Liu, M.O. Tade, S.B. Wang, N-doped graphene from metal-organic frameworks for catalytic oxidation of p-hydroxylbenzoic acid:N-functionality and mechanism, ACS Sustainable Chem. Eng. 5(3)(2017)2693-2701. [73] E.M. Rodríguez, G. Márquez, M. Tena, P.M. Álvarez, F.J. Beltrán, Determination of main species involved in the first steps of TiO2 photocatalytic degradation of organics with the use of scavengers:the case of ofloxacin, Appl. Catal. B 178(2015)44-53. [74] P. Sun, H. Liu, M.B. Feng, L. Guo, Z.C. Zhai, Y.S. Fang, X.S. Zhang, V.K. Sharma, Nitrogen-sulfur co-doped industrial graphene as an efficient peroxymonosulfate activator:Singlet oxygen-dominated catalytic degradation of organic contaminants, Appl. Catal. B 251(2019)335-345. [75] Z.Y. Guan, S.Y. Zuo, F. Yang, B.Y. Zhang, H.M. Xu, D.S. Xia, M.Z. Huang, D.Y. Li, The polarized electric field on Fe-N-C-S promotes non-radical process of peroxymonosulfate degrade diclofenac sodium, Colloids Surf.. A 621(2021)126608. [76] C.Y. Guo, C.F. Chen, J.Y. Lu, D. Fu, C.Z. Yuan, X.L. Wu, K.N. Hui, J.R. Chen, Stable and recyclable Fe3C@CN catalyst supported on carbon felt for efficient activation of peroxymonosulfate, J. Colloid Interface Sci. 599(2021)219-226. [77] W.X. Qin, G.D. Fang, Y.J. Wang, D.M. Zhou, Mechanistic understanding of polychlorinated biphenyls degradation by peroxymonosulfate activated with CuFe2O4 nanoparticles:Key role of superoxide radicals, Chem. Eng. J. 348(2018)526-534. [78] P.P. Fu, Q.S. Xia, H.M. Hwang, P.C. Ray, H.T. Yu, Mechanisms of nanotoxicity:Generation of reactive oxygen species, J. Food Drug Anal. 22(1)(2014)64-75. [79] S.A. Liu, D. Liu, Y.L. Sun, P.Y. Xiao, H.J. Lin, J.R. Chen, X.L. Wu, X.G. Duan, S.B. Wang, Enzyme-mimicking single-atom FeN4 sites for enhanced photo-Fentonlike reactions, Appl. Catal. B 310(2022)121327. [80] T. Yang, S.S. Fan, Y. Li, Q. Zhou, Fe-N/C single-atom catalysts with high density of Fe-Nx sites toward peroxymonosulfate activation for high-efficient oxidation of bisphenol A:Electron-transfer mechanism, Chem. Eng. J. 419(2021)129590. |