[1] C.H. Vo, C. Mondelli, H. Hamedi, J. Pérez-Ramírez, S. Farooq, I.A. Karimi, Sustainability assessment of thermocatalytic conversion of CO2 to transportation fuels, methanol, and 1-propanol, ACS Sustainable Chem. Eng. 9(31)(2021)10591-10600. [2] P. Tian, Y.X. Wei, M. Ye, Z.M. Liu, Methanol to olefins (MTO):From fundamentals to commercialization, ACS Catal. 5(3)(2015)1922-1938. [3] Z Liu, Methanol to Olefins, Science Press:Beijing, China, 2015.(in Chinese). [4] M. Ye, P. Tian, Z.M. Liu, DMTO:A sustainable methanol-to-olefins technology, Engineering 7(1)(2021)17-21. [5] J.B. Zhou, J.P. Zhao, J.L. Zhang, T. Zhang, M. Ye, Z.M. Liu, Regeneration of catalysts deactivated by coke deposition:A review, Chin. J. Catal. 41(7)(2020)1048-1061. [6] J.P. Zhao, J.B. Zhou, M. Ye, Z.M. Liu, Kinetic study on air regeneration of industrial methanol-to-olefin catalyst, Ind. Eng. Chem. Res. 59(26)(2020)11953-11961. [7] H.Q. An, H.A. Li, J.B. Zhou, J.L. Zhang, T. Zhang, M. Ye, Z.M. Liu, Kinetics of steam regeneration of SAPO-34 zeolite catalyst in methanol-to-olefins (MTO) process, Chin. J. Chem. Eng. 35(2021)231-238. [8] M.S. Ahmad, C.K. Cheng, P. Bhuyar, A.E. Atabani, A. Pugazhendhi, N.T.L. Chi, T. Witoon, J.W. Lim, J.C. Juan, Effect of reaction conditions on the lifetime of SAPO-34 catalysts in methanol to olefins process-A review, Fuel 283(2021)118851. [9] Y.J. Jiang, J. Huang, V.R. Reddy Marthala, Y.S. Ooi, J. Weitkamp, M. Hunger, in situ MAS NMR-UV/Vis investigation of H-SAPO-34 catalysts partially coked in the methanol-to-olefin conversion under continuous-flow conditions and of their regeneration, Microporous Mesoporous Mater. 105(1-2)(2007)132-139. [10] H.M. Nan, Y.S. Wen, X.Z. Wu, F.Z. Guan, H.F. Jin, B.Q. Sun, Coke combustion study of methanol to olefins (MTO) industrial plant, Mod. Chem. Ind. 34(5)(2014)134-137. [11] X. Xu, Y.F. Zhao, M. Ye, Z. M. Liu, Study on air regeneration dynamics of DMTO catalyst. Industrial Catalysis, 26(7)(2018)54-59. [12] H. Li, X.S. Yuan, M.B. Gao, M. Ye, Z.M. Liu, Study of catalyst coke distribution based on population balance theory:Application to methanol to olefins process, AlChE. J. 65(4)(2019)1149-1161. [13] T. Cordero-Lanzac, A.T. Aguayo, A.G. Gayubo, J. Bilbao, Consideration of the activity distribution using the population balance theory for designing a dual fluidized bed reactor-regenerator system. Application to the MTO process, Chem. Eng. J. 405(2021)126448. [14] B. Hejazi, N. Shabany, Kinetic modeling of methanol-to-olefins process over SAPO-34 catalysts in a dual fluidized bed reactor-regenerator, Chem. Eng. Res. Des. 179(2022)374-387. [15] J.O. Barth, A. Jentys, J.A. Lercher, Elementary reactions and intermediate species formed during the oxidative regeneration of spent fluid catalytic cracking catalysts, Ind. Eng. Chem. Res. 43(12)(2004)3097-3104. [16] C. Kern, A. Jess, Regeneration of coked catalysts-modelling and verification of coke burn-off in single particles and fixed bed reactors, Chem. Eng. Sci. 60(15)(2005)4249-4264. [17] M. Guisnet, P. Magnoux, Deactivation by coking of zeolite catalysts. Prevention of deactivation. Optimal conditions for regeneration, Catal. Today 36(4)(1997)477-483. [18] J.B. Zhou, J.L. Zhang, Y.C. Zhi, J.P. Zhao, T. Zhang, M. Ye, Z.M. Liu, Partial regeneration of the spent SAPO-34 catalyst in the methanol-to-olefins process via steam gasification, Ind. Eng. Chem. Res. 57(51)(2018)17338-17347. [19] J.B. Zhou, M.B. Gao, J.L. Zhang, W.J. Liu, T. Zhang, H. Li, Z.C. Xu, M. Ye, Z.M. Liu, Directed transforming of coke to active intermediates in methanol-to-olefins catalyst to boost light olefins selectivity, Nat. Commun. 12(2021)17. [20] U. Olsbye, S. Svelle, M. Bjoergen, P. Beato, T.V.W. Janssens, F. Joensen, S. Bordiga, K.P. Lillerud, Conversion of methanol to hydrocarbons:How zeolite cavity and pore size controls product selectivity, Angew. Chem. Int. Ed. 51(24)(2012)5810-5831. [21] B.P.C. Hereijgers, F. Bleken, M.H. Nilsen, S. Svelle, K.P. Lillerud, M. Bjoergen, B.M. Weckhuysen, U. Olsbye, Product shape selectivity dominates the Methanol-to-Olefins (MTO) reaction over H-SAPO-34 catalysts, J. Catal. 264(1)(2009)77-87. [22] M. Bjoergen, U. Olsbye, S. Kolboe, Coke precursor formation and zeolite deactivation:Mechanistic insights from hexamethylbenzene conversion, J. Catal. 215(1)(2003)30-44. [23] J.F. Haw, D.M. Marcus, Well-defined (supra) molecular structures in zeolite methanol-to-olefin catalysis, Top. Catal. 34(1)(2005)41-48. [24] W.L. Dai, M. Scheibe, L.D. Li, N.J. Guan, M. Hunger, Effect of the methanol-to-olefin conversion on the PFG NMR self-diffusivities of ethane and ethene in large-crystalline SAPO-34, J. Phys. Chem. C 116(3)(2012)2469-2476. [25] W.L. Dai, G.J. Wu, L.D. Li, N.J. Guan, M. Hunger, Mechanisms of the deactivation of SAPO-34 materials with different crystal sizes applied as MTO catalysts, ACS Catal. 3(4)(2013)588-596. [26] W.G. Song, H. Fu, J.F. Haw, Supramolecular origins of product selectivity for methanol-to-olefin catalysis on HSAPO-34, J. Am. Chem. Soc. 123(20)(2001)4749-4754. [27] M.B. Gao, H.A. Li, M.A. Yang, J.B. Zhou, X.S. Yuan, P. Tian, M. Ye, Z.M. Liu, A modeling study on reaction and diffusion in MTO process over SAPO-34 zeolites, Chem. Eng. J. 377(2019)119668. [28] S.M. Campbell, D.M. Bibby, J.M. Coddington, R.F. Howe, R.H. Meinhold, Dealumination of HZSM-5 zeolites, J. Catal. 161(1)(1996)338-349. [29] M. Muller, G. Harvey, R. Prins, Comparison of the dealumination of zeolites beta, mordenite, ZSM-5 and ferrierite by thermal treatment, leaching with oxalic acid and treatment with SiCl4 by 1H, 29Si and 27Al MAS NMR, Microporous Mesoporous Mater. 34(2)(2000)135-147. [30] C.S. Triantafillidis, A.G. Vlessidis, N.P. Evmiridis, Dealuminated H-Y zeolites:Influence of the degree and the type of dealumination method on the structural and acidic characteristics of H-Y zeolites, Ind. Eng. Chem. Res. 39(2)(2000)307-319. [31] Y. Watanabe, A. Koiwai, H. Takeuchi, S.A. Hyodo, S. Noda, Multinuclear NMR studies on the thermal stability of SAPO-34, J. Catal. 143(2)(1993)430-436. [32] G.Y. Liu, P. Tian, J.Z. Li, D.Z. Zhang, F. Zhou, Z.M. Liu, Synthesis, characterization and catalytic properties of SAPO-34 synthesized using diethylamine as a template, Microporous Mesoporous Mater. 111(2008)143-149. [33] N. Park, M.J. Park, K.S. Ha, Y.J. Lee, K.W. Jun, Modeling and analysis of a methanol synthesis process using a mixed reforming reactor:Perspective on methanol production and CO2 utilization, Fuel 129(2014)163-172. [34] L. Sun, R. Smith, Rectisol wash process simulation and analysis, J. Clean. Prod. 39(2013)321-328. [35] S.Y. Yang, Q.C. Yang, H.C. Li, X. Jin, X.X. Li, Y. Qian, An integrated framework for modeling, synthesis, analysis, and optimization of coal gasification-based energy and chemical processes, Ind. Eng. Chem. Res. 51(48)(2012)15763-15777. [36] L. Zhou, S.Y. Hu, D.J. Chen, Y.R. Li, B. Zhu, Y. Jin, Study on systems based on coal and natural gas for producing dimethyl ether, Ind. Eng. Chem. Res. 48(8)(2009)4101-4108. [37] T.T. Tuan, L.D. Tufa, M.I.A. Mutalib, A.F.M. Abdallah, Control of depropanizer in dynamic hysys simulation using MPC in matlab-simulink, Procedia Eng. 148(2016)1104-1111. [38] F. D'Almeida, C. Pires, Modeling of a demethanizer tower using statistical tools, J. Environ. Sci. Eng. A 4(3)(2015):124-130. [39] A.G. Gayubo, A.T. Aguayo, M. Castilla, M. Olazar, J. Bilbao, Catalyst reactivation kinetics for methanol transformation into hydrocarbons. Expressions for designing reaction-regeneration cycles in isothermal and adiabatic fixed bed reactor, Chem. Eng. Sci. 56(17)(2001)5059-5071. [40] T. Cordero-Lanzac, A. Ramirez, A. Navajas, L. Gevers, S. Brunialti, L.M. Gandia, A.T. Aguayo, S. Mani Sarathy, J. Gascon, A techno-economic and life cycle assessment for the production of green methanol from CO2:Catalyst and process bottlenecks, J. Energy Chem. 68(2022)255-266. [41] A. Ateka, P. Perez-Uriarte, M. Gamero, J. Erena, A.T. Aguayo, J. Bilbao, A comparative thermodynamic study on the CO2 conversion in the synthesis of methanol and of DME, Energy 120(2017)796-804. [42] F. Sha, Z. Han, S. Tang, J.J. Wang, C. Li, Hydrogenation of carbon dioxide to methanol over Non-Cu-based heterogeneous catalysts, ChemSusChem 13(23)(2020)6160-6181. [43] S.Y. Yang, Q.C. Yang, Y. Qian, A composite efficiency metrics for evaluation of resource and energy utilization, Energy 61(2013)455-462. [44] J.Q. Liang, D.Z. Liu, S.L. Xu, M. Ye, Comparison of light olefins production routes in China:Combining techno-economics and security analysis, Chem. Eng. Res. Des. 194(2023)225-241. [45] P. Markewitz, W. Kuckshinrichs, W. Leitner, J. Linssen, P. Zapp, R. Bongartz, A. Schreiber, T.E. Muller, Worldwide innovations in the development of carbon capture technologies and the utilization of CO2, Energy Environ. Sci. 5(6)(2012)7281-7305. [46] Q.C. Yang, X.F. Li, Q. Yang, W.Q. Huang, P.J. Yu, D.W. Zhang, Opportunities for CO2 utilization in coal to green fuel process:Optimal design and performance evaluation, ACS Sustainable Chem. Eng. 8(3)(2020)1329-1342. [47] D.Q. Zhang, R.H. Duan, H.W. Li, Q.C. Yang, H.R. Zhou, Optimal design, thermodynamic, cost and CO2 emission analyses of coal-to-methanol process integrated with chemical looping air separation and hydrogen technology, Energy 203(2020)117876. [48] B. Anicic, P. Trop, D. Goricanec, Comparison between two methods of methanol production from carbon dioxide, Energy 77(2014)279-289. [49] X.F. Shi, Y. Qian, S.Y. Yang, Fluctuation analysis of a complementary wind-solar energy system and integration for large scale hydrogen production, ACS Sustainable Chem. Eng. 8(18)(2020)7097-7110. [50] V. Paunovic, V. Sushkevich, P. Rzepka, L. Artiglia, R. Hauert, S. Sik Lee, J.A. van Bokhoven,Reactivation of catalysts for methanol-to-hydrocarbons conversion with hydrogen. Journal of Catalysis, 407(2022)54-64. [51] F. Bauer, H. Ernst, E. Geidel, R. Schodel, Reactivation of coked H-ZSM-5 by treatment with hydrogen and alkanes, J. Catal. 164(1)(1996)146-151. [52] Y.F. Xu, X.Y. Li, M.Y. Ding, Techno-economic analysis of olefin production based on Fischer-Tropsch synthesis, Chem 7(8)(2021)1977-1980. [53] D. Xiang, S.Y. Yang, X.X. Li, Y. Qian, Life cycle assessment of energy consumption and GHG emissions of olefins production from alternative resources in China, Energy Convers. Manag. 90(2015)12-20. [54] D. Xiang, S.Y. Yang, Z.H. Mai, Y. Qian, Comparative study of coal, natural gas, and coke-oven gas based methanol to olefins processes in China, Comput. Chem. Eng. 83(2015)176-185. [55] S.Y. Yang, B.X. Li, J.W. Zheng, Y.C. Yang, X.H. Gao, Performances and net CO2 emission of light olefin production based on biomass-to-methanol and DMTO-II technologies with CO2 capture and sequestration, ACS Sustainable Chem. Eng. 9(44)(2021)14670-14677. |