[1] Z. Xiong, Z. Fang, L. Jiang, H.D. Han, L.M. He, K. Xu, J. Xu, S. Su, S. Hu, Y. Wang, J. Xiang, Comparative study of catalytic and non-catalytic steam reforming of bio-oil: Importance of pyrolysis temperature and its parent biomass particle size during bio-oil production process, Fuel 314(2022) 122746. [2] G.Q. Guan, M. Kaewpanha, X.G. Hao, A. Abudula, Catalytic steam reforming of biomass tar: Prospects and challenges, Renew. Sustain. Energy Rev. 58(2016) 450-461. [3] I. Adanez-Rubio, F. Garcia-Labiano, A. Abad, L.F. de Diego, J. Adanez, Synthesis gas and H2 production by chemical looping reforming using bio-oil from fast pyrolysis of wood as raw material, Chem. Eng. J. 431(2022) 133376. [4] P.P. Singh, A. Jaswal, N. Nirmalkar, T. Mondal, Synergistic effect of transition metals substitution on the catalytic activity of LaNi0.5M0.5O3(M = Co, Cu, and Fe) perovskite catalyst for steam reforming of simulated bio-oil for green hydrogen production, Renew. Energy 207(2023) 575-587. [5] S. Rodriguez, A. Capa, R. Garcia, D. Chen, F. Rubiera, C. Pevida, M.V. Gil, Blends of bio-oil/biogas model compounds for high-purity H2 production by sorption enhanced steam reforming (SESR): Experimental study and energy analysis, Chem. Eng. J. 432(2022) 134396. [6] X. Hu, Z.M. Zhang, M. Gholizadeh, S. Zhang, C.H. Lam, Z. Xiong, Y. Wang, Coke formation during thermal treatment of bio-oil, Energy Fuels 34(7) (2020) 7863-7914. [7] T. Kan, J.X. Xiong, X.L. Li, T.Q. Ye, L.X. Yuan, Y. Torimoto, M. Yamamoto, Q.X. Li, High efficient production of hydrogen from crude bio-oil via an integrative process between gasification and current-enhanced catalytic steam reforming, Int. J. Hydrog. Energy 35(2) (2010) 518-532. [8] S.Z. Yan, Q. Zhai, Q.X. Li, Maximum hydrogen production by autothermal steam reforming of bio-oil with NiCuZnAl catalyst, Chin. J. Chem. Phys. 25(3) (2012) 365-372. [9] R. Trane, S. Dahl, M.S. Skjoeth-Rasmussen, A.D. Jensen, Catalytic steam reforming of bio-oil, Int. J. Hydrog. Energy 37(8) (2012) 6447-6472. [10] Y. Zhang, W. Li, S. Zhang, Q. Xu, Y. Yan, Steam reforming of bio-oil for hydrogen production: Effect of Ni-co bimetallic catalysts, Chem. Eng. Technol. 35(2) (2012) 302-308. [11] J. Remon, J.A. Medrano, F. Bimbela, L. Garcia, J. Arauzo, Ni/Al-Mg-O solids modified with Co or Cu for the catalytic steam reforming of bio-oil, Appl. Catal. B 132-133(2013) 433-444. [12] X.L. Li, Z.M. Zhang, L.J. Zhang, H.L. Fan, X.L. Li, Q. Liu, S. Wang, X. Hu, Investigation of coking behaviors of model compounds in bio-oil during steam reforming, Fuel 265(2020) 116961. [13] Y.N. Zhang, T.R. Brown, G.P. Hu, R.C. Brown, Comparative techno-economic analysis of biohydrogen production via bio-oil gasification and bio-oil reforming, Biomass Bioenergy 51(2013) 99-108. [14] F. Bimbela, D. Chen, J. Ruiz, L. Garcia, J. Arauzo, Ni/Al coprecipitated catalysts modified with magnesium and copper for the catalytic steam reforming of model compounds from biomass pyrolysis liquids, Appl. Catal. B 119-120(2012) 1-12. [15] L. An, C.Q. Dong, Y.P. Yang, J.J. Zhang, L. He, The influence of Ni loading on coke formation in steam reforming of acetic acid, Renew. Energy 36(3) (2011) 930-935. [16] S.D. Davidson, K.A. Spies, D.H. Mei, L. Kovarik, I. Kutnyakov, X.S. Li, V. Lebarbier Dagle, K.O. Albrecht, R.A. Dagle, Steam reforming of acetic acid over co-supported catalysts: Coupling ketonization for greater stability, ACS Sustainable Chem. Eng. 5(10) (2017) 9136-9149. [17] T.M.C. Hoang, B. Geerdink, J.M. Sturm, L. Lefferts, K. Seshan, Steam reforming of acetic acid - A major component in the volatiles formed during gasification of humin, Appl. Catal. B 163(2015) 74-82. [18] L. Santamaria, G. Lopez, A. Arregi, M. Amutio, M. Artetxe, J. Bilbao, M. Olazar, Influence of the support on Ni catalysts performance in the in-line steam reforming of biomass fast pyrolysis derived volatiles, Appl. Catal. B 229(2018) 105-113. [19] S. Anil, S. Indraja, R. Singh, S. Appari, B. Roy, A review on ethanol steam reforming for hydrogen production over Ni/Al2O3 and Ni/CeO2 based catalyst powders, Int. J. Hydrog. Energy 47(13) (2022) 8177-8213. [20] L.L. Lin, Q.L. Yu, M. Peng, A.W. Li, S.Y. Yao, S.H. Tian, X. Liu, A. Li, Z. Jiang, R. Gao, X.D. Han, Y.W. Li, X.D. Wen, W. Zhou, D. Ma, Atomically dispersed Ni/α-MoC catalyst for hydrogen production from methanol/water, J. Am. Chem. Soc. 143(1) (2021) 309-317. [21] M.Q. Chen, J.X. Hu, Y.S. Wang, C.S. Wang, Z.Y. Tang, C. Li, D.F. Liang, W. Cheng, Z.L. Yang, H. Zhang, Hydrogen production from acetic acid steam reforming over Ti-modified Ni/Attapulgite catalysts, Int. J. Hydrog. Energy 46(5) (2021) 3651-3668. [22] F.B. Zhang, N. Wang, L. Yang, M. Li, L.H. Huang, Ni-Co bimetallic MgO-based catalysts for hydrogen production via steam reforming of acetic acid from bio-oil, Int. J. Hydrog. Energy 39(32) (2014) 18688-18694. [23] C.X. Dang, S.J. Wu, Y.H. Cao, H.J. Wang, F. Peng, H. Yu, Co-production of high quality hydrogen and synthesis gas via sorption-enhanced steam reforming of glycerol coupled with methane reforming of carbonates, Chem. Eng. J. 360(2019) 47-53. [24] S. Chernyak, A. Burtsev, S. Maksimov, S. Kupreenko, K. Maslakov, S. Savilov, Structural evolution, stability, deactivation and regeneration of Fischer-Tropsch cobalt-based catalysts supported on carbon nanotubes, Appl. Catal. A 603(2020) 117741. [25] J.J. Huo, H.N. Pham, Y. Cheng, H.H. Lin, L.T. Roling, A.K. Datye, B.H. Shanks, Deactivation and regeneration of carbon supported Pt and Ru catalysts in aqueous phase hydrogenation of 2-pentanone, Catal. Sci. Technol. 10(9) (2020) 3047-3056. [26] W.D. Zhang, H.Q. Xie, Z.Y. Yu, P.L. Wang, Z.Y. Wang, Q.B. Yu, Steam reforming of tar from raw coke oven gas over bifunctional catalysts: Reforming performance for H2 production, Environ. Prog. Sustain. Energy 40(2) (2021) 13501. [27] M. Argyle, C. Bartholomew, Heterogeneous catalyst deactivation and regeneration: A review, Catalysts 5(1) (2015) 145-269. [28] A. Arregi, G. Lopez, M. Amutio, I. Barbarias, L. Santamaria, J. Bilbao, M. Olazar, Regenerability of a Ni catalyst in the catalytic steam reforming of biomass pyrolysis volatiles, J. Ind. Eng. Chem. 68(2018) 69-78. [29] S. Veiga, J. Bussi, Steam reforming of crude glycerol over nickel supported on activated carbon, Energy Convers. Manag. 141(2017) 79-84. [30] J. Sehested, N.W. Larsen, H. Falsig, B. Hinnemann, Sintering of nickel steam reforming catalysts: Effective mass diffusion constant for Ni-OH at nickel surfaces, Catal. Today 228(2014) 22-31. [31] Z.W. Li, Z.G. Wang, S. Kawi, Sintering and coke resistant core/yolk shell catalyst for hydrocarbon reforming, ChemCatChem 11(1) (2019) 202-224. [32] S.Y. Foong, R.K. Liew, Y.F. Yang, Y.W. Cheng, P.N.Y. Yek, W.A. Wan Mahari, X.Y. Lee, C.S. Han, D.V N. Vo, Q. Van Le, M. Aghbashlo, M. Tabatabaei, C. Sonne, W.X. Peng, S.S. Lam, Valorization of biomass waste to engineered activated biochar by microwave pyrolysis: Progress, challenges, and future directions, Chem. Eng. J. 389(2020) 124401. [33] G. Canche-Escamilla, L. Guin-Aguillon, S. Duarte-Aranda, F. Barahona-Perez, Characterization of bio-oil and biochar obtained by pyrolysis at high temperatures from the lignocellulosic biomass of the henequen plant, J. Mater. Cycles Waste Manag. 24(2) (2022) 751-762. [34] J. Li, J.J. Dai, G.Q. Liu, H.D. Zhang, Z.P. Gao, J. Fu, Y.F. He, Y. Huang, Biochar from microwave pyrolysis of biomass: A review, Biomass Bioenergy 94(2016) 228-244. [35] Y.C. Li, B. Xing, Y. Ding, X.H. Han, S.R. Wang, A critical review of the production and advanced utilization of biochar via selective pyrolysis of lignocellulosic biomass, Bioresour. Technol. 312(2020) 123614. [36] Q.L. Xu, P. Feng, W. Qi, K. Huang, S.Z. Xin, Y.J. Yan, Catalyst deactivation and regeneration during CO2 reforming of bio-oil, Int. J. Hydrog. Energy 44(21) (2019) 10277-10285. [37] W.Q. Xu, Z.Y. Liu, A.C. Johnston-Peck, S.D. Senanayake, G. Zhou, D. Stacchiola, E.A. Stach, J.A. Rodriguez, Steam reforming of ethanol on Ni/CeO2: Reaction pathway and interaction between Ni and the CeO2 support, ACS Catal. 3(5) (2013) 975-984. [38] L.J. Leng, X.W. Xu, L. Wei, L.L. Fan, H.J. Huang, J.N. Li, Q. Lu, J. Li, W.G. Zhou, Biochar stability assessment by incubation and modelling: Methods, drawbacks and recommendations, Sci. Total Environ. 664(2019) 11-23. [39] D. Patwa, H.H. Muigai, K. Ravi, S. Sreedeep, P. Kalita, A novel application of biochar produced from invasive weeds and industrial waste in thermal backfill for crude oil industries, Waste Biomass Valorization 13(6) (2022) 3025-3042. [40] L.J. Leng, H.J. Huang, An overview of the effect of pyrolysis process parameters on biochar stability, Bioresour. Technol. 270(2018) 627-642. [41] F. Wang, J. Zhou, G.Q. Wang, Transport characteristic study of methane steam reforming coupling methane catalytic combustion for hydrogen production, Int. J. Hydrog. Energy 37(17) (2012) 13013-13021. [42] R. Tu, Y. Sun, Y.J. Wu, X.D. Fan, S.C. cheng, E.C. Jiang, X.W. Xu, The fuel properties and adsorption capacities of torrefied camellia shell obtained via different steam-torrefaction reactors, Energy 238(2022) 121969. [43] H.L. Sun, D.D. Feng, S.Z. Sun, Q.Y. Wei, Y.J. Zhao, Y. Zhang, M. Xie, Y.K. Qin, Effect of steam on coke deposition during the tar reforming from corn straw pyrolysis over biochar, Fuel Process. Technol. 224(2021) 107007. [44] H. Du, X.Y. Ma, M. Jiang, P.F. Yan, Z.C. Zhang, Autocatalytic co-upgrading of biochar and pyrolysis gas to syngas, Energy 221(2021) 119837. [45] H.M. Yang, Y.X. Cui, T. Han, L. Sandstrom, P. Jonsson, W.H. Yang, High-purity syngas production by cascaded catalytic reforming of biomass pyrolysis vapors, Appl. Energy 322(2022) 119501. [46] C.Z. Li, Importance of volatile-char interactions during the pyrolysis and gasification of low-rank fuels - A review, Fuel 112(2013) 609-623. [47] A.J. Gao, Y. Wang, G.Y. Lin, B. Li, X. Hu, Y. Huang, S. Zhang, H. Zhang, Volatile-char interactions during biomass pyrolysis: Reactor design toward product control, Renew. Energy 185(2022) 1-7. [48] K. Sipila, E. Kuoppala, L. Fagernas, A. Oasmaa, Characterization of biomass-based flash pyrolysis oils, Biomass Bioenergy 14(2) (1998) 103-113. [49] P. Pimenidou, V. Dupont, Characterisation of palm empty fruit bunch (PEFB) and pinewood bio-oils and kinetics of their thermal degradation, Bioresour. Technol. 109(2012) 198-205. [50] O.A. Omoniyi, V. Dupont, Chemical looping steam reforming of acetic acid in a packed bed reactor, Appl. Catal. B 226(2018) 258-268. [51] C. Li, Y.F. Sun, Z.J. Yi, L.J. Zhang, S. Zhang, X. Hu, Co-pyrolysis of coke bottle wastes with cellulose, lignin and sawdust: Impacts of the mixed feedstock on char properties, Renew. Energy 181(2022) 1126-1139. [52] Y.R. Wang, Z.M. Zhang, S. Zhang, Y. Wang, S. Hu, J. Xiang, X. Hu, Steam reforming of acetic acid over Ni/biochar catalyst treated with HNO3: Impacts of the treatment on surface properties and catalytic behaviors, Fuel 278(2020) 118341. [53] X.L. Li, L.J. Zhang, Q.Y. Li, Z.M. Zhang, S. Zhang, Y.J. Li, S.L. Niu, M. Gholizadeh, L.L. Xu, X. Hu, Steam reforming of sugars: Roles of hydroxyl group and carbonyl group in coke formation, Fuel 292(2021) 120282. [54] G. Garbarino, V. Sanchez Escribano, E. Finocchio, G. Busca, Steam reforming of phenol-ethanol mixture over 5% Ni/Al2O3, Appl. Catal. B 113-114(2012) 281-289. [55] X. Hu, G.X. Lu, Investigation of the steam reforming of a series of model compounds derived from bio-oil for hydrogen production, Appl. Catal. B 88(3-4) (2009) 376-385. [56] M. Martinelli, C.D. Watson, G. Jacobs, Sodium doping of Pt/m-ZrO2 promotes C-C scission and decarboxylation during ethanol steam reforming, Int. J. Hydrog. Energy 45(36) (2020) 18490-18501. [57] C.T. Zhang, X. Hu, Z.M. Zhang, L.J. Zhang, D.H. Dong, G.G. Gao, R. Westerhof, S.S.A. Syed-Hassan, Steam reforming of acetic acid over Ni/Al2O3 catalyst: Correlation of calcination temperature with the interaction of nickel and alumina, Fuel 227(2018) 307-324. [58] Z.R. Gao, C. Li, Y.W. Shao, G.M. Gao, Q. Xu, H.L. Tian, S. Zhang, X. Hu, Sequence of Ni/SiO2 and Cu/SiO2 in dual catalyst bed significantly impacts coke properties in glycerol steam reforming, Int. J. Hydrog. Energy 46(52) (2021) 26367-26380. [59] P. Chamorro-Posada, J. Vazquez-Cabo, O. Rubinos-Lopez, J. Martin-Gil, S. Hernandez-Navarro, P. Martin-Ramos, F.M. Sanchez-Arevalo, A.V. Tamashausky, C. Merino-Sanchez, R.C. Dante, THz TDS study of several sp2 carbon materials: Graphite, needle coke and graphene oxides, Carbon 98(2016) 484-490. [60] Z.Q. Wu, W.C. Yang, H.Y. Meng, J. Zhao, L. Chen, Z.Y. Luo, S.Z. Wang, Physicochemical structure and gasification reactivity of co-pyrolysis char from two kinds of coal blended with lignocellulosic biomass: Effects of the carboxymethylcellulose sodium, Appl. Energy 207(2017) 96-106. [61] A. Guedes, B. Valentim, A.C. Prieto, F. Noronha, Raman spectroscopy of coal macerals and fluidized bed char morphotypes, Fuel 97(2012) 443-449. [62] D.M. Keown, X.J. Li, J.I. Hayashi, C.Z. Li, Characterization of the structural features of char from the pyrolysis of cane trash using Fourier transform-raman spectroscopy, Energy Fuels 21(3) (2007) 1816-1821. [63] S.Z. Xin, H.P. Yang, Y.Q. Chen, M.F. Yang, L. Chen, X.H. Wang, H.P. Chen, Chemical structure evolution of char during the pyrolysis of cellulose, J. Anal. Appl. Pyrolysis 116(2015) 263-271. [64] Y.R. Wang, X.J. Zhang, Y.W. Shao, Q.Y. Li, M.J. Fan, S. Zhang, X. Hu, Modification of nickel-based catalyst with transition metals to tailor reaction intermediates and property of coke in steam reforming of acetic acid, Fuel 318(2022) 123698. |