[1] Z. Xue, J.Y. Guo, S.S. Wu, W.F. Xie, Y.J. Fu, X.J. Zhao, K. Fan, M. Xu, H. Yan, M.F. Shao, X. Duan, Co-thermal in situ reduction of inorganic carbonates to reduce carbon-dioxide emission, Sci. China Chem. 66(4) (2023) 1201-1210. [2] P. Jiang, L. Li, G.H. Zhao, H. Zhang, T. Ji, L.W. Mu, X.H. Lu, J.H. Zhu, Reductive calcination of calcium carbonate in hydrogen and methane: A thermodynamic analysis on different reaction routes and evaluation of carbon dioxide mitigation potential, Chem. Eng. Sci. 276(2023) 118823. [3] R.T. Kusuma, R.B. Hiremath, P. Rajesh, B. Kumar, S. Renukappa, Sustainable transition towards biomass-based cement industry: A review, Renew. Sustain. Energy Rev. 163(2022) 112503. [4] S.M. Liao, D. Wang, C.Y. Xia, J. Tang, China’s provincial process CO2 emissions from cement production during 1993-2019, Sci. Data 9(1) (2022) 165. [5] M. Silakhori, M. Jafarian, A. Chinnici, W. Saw, M. Venkataraman, W. Lipinski, G.J. Nathan, Effects of steam on the kinetics of calcium carbonate calcination, Chem. Eng. Sci. 246(2021) 116987. [6] T.T. Belete, M.C.M. van de Sanden, M.A. Gleeson, Effects of transition metal dopants on the calcination of CaCO3 under Ar, H2O and H2, J. CO2 Util. 31(2019) 152-166. [7] D. Leeson, N. Mac Dowell, N. Shah, C. Petit, P.S. Fennell, A Techno-economic analysis and systematic review of carbon capture and storage (CCS) applied to the iron and steel, cement, oil refining and pulp and paper industries, as well as other high purity sources, Int. J. Greenh. Gas Contr. 61(2017) 71-84. [8] W. Zhang, Y.J. Li, Y.Q. Qian, B.Y. Li, J.L. Zhao, Z.Y. Wang, NO removal performance of CO in carbonation stage of calcium looping for CO2 capture, Chin. J. Chem. Eng. 37(2021) 30-38. [9] M.B. Hagg, A. Lindbrathen, X. He, S.G. Nodeland, T. Cantero, Pilot demonstration-reporting on CO2 capture from a cement plant using hollow fiber process, Energy Procedia 114(2017) 6150-6165. [10] T.Y. Wu, S.T. Ng, J. Chen, Deciphering the CO2 emissions and emission intensity of cement sector in China through decomposition analysis, J. Clean. Prod. 352(2022) 131627. [11] A.A. Giardini, C.A. Salotti, J.F. Lakner, Synthesis of graphite and hydrocarbons by reaction between calcite and hydrogen, Science 159(3812) (1968) 317-319. [12] A. Reller, C. Padeste, P. Hug, Formation of organic carbon compounds from metal carbonates, Nature 329(1987) 527-529. [13] S. Lux, G. Baldauf-Sommerbauer, M. Siebenhofer, Hydrogenation of inorganic metal carbonates: A review on its potential for carbon dioxide utilization and emission reduction, ChemSusChem 11(19) (2018) 3357-3375. [14] I. Wang, D. Li, S.H. Wang, Y. Wang, G. Lin, B.H. Yan, Z.S. Li, Limestone hydrogenation combined with reverse water-gas shift reaction under fluidized and iso-thermal conditions using MFB-TGA-MS, Chem. Eng. J. 472(2023) 144822. [15] S.L. Shi, J.C. Yu, Y. Pan, Y.X. Zhang, H.Y. Yang, T. Shen, Q.Y. Liu, Z.Y. Liu, Hydrogenation of calcium carbonate to carbon monoxide and methane, Fuel 354(2023) 129385. [16] G. Giammaria, L. Lefferts, Plasma enhanced CaCO3 hydrogenation for fuel production, 2019 North American Catalysis Society Meeting, NAM, 2019. [17] I. Galan, F.P. Glasser, C. Andrade, Calcium carbonate decomposition, J. Therm. Anal. Calorim. 111(2) (2013) 1197-1202. [18] W. Liu, Y.M. Wan, Y.L. Xiong, P.B. Gao, Green hydrogen standard in China: Standard and evaluation of low-carbon hydrogen, clean hydrogen, and renewable hydrogen, Int. J. Hydrog. Energy 47(58) (2022) 24584-24591. [19] S. Magagula, J.Z. Han, X.Y. Liu, B.C. Sempuga, Targeting efficient biomass gasification, Chin. J. Chem. Eng. 33(2021) 268-278. [20] W. Guo, B. Zhang, J. Zhang, Z.Q. Wu, Y.W. Li, B.L. Yang, Liquid chemical looping gasification of biomass: Thermodynamic analysis on cellulose, Chin. J. Chem. Eng. 37(2021) 79-88. [21] L. Liu, P. Jiang, H.L. Qian, L.W. Mu, X.H. Lu, J.H. Zhu, CO2-negative biomass conversion: An economic route with co-production of green hydrogen and highly porous carbon, Appl. Energy 311(2022) 118685. [22] S. Ma, C.Q. Dong, X.Y. Hu, J.J. Xue, Y. Zhao, X.Q. Wang, Techno-economic evaluation of a combined biomass gasification-solid oxide fuel cell system for ethanol production via syngas fermentation, Fuel 324(2022) 124395. [23] W.D. Tian, J.W. Zhang, Z. Cui, H.R. Zhang, B. Liu, Microscopic mechanism study and process optimization of dimethyl carbonate production coupled biomass chemical looping gasification system, Chin. J. Chem. Eng. 58(2023) 291-305. [24] X. Niu, L.H. Shen, Ca- and Mg-rich waste as high active carrier for chemical looping gasification of biomass, Chin. J. Chem. Eng. 38(2021) 145-154. [25] F.X. Li, L.S. Fan, Clean coal conversion processes-progress and challenges, Energy Environ. Sci. 1(2) (2008) 248-267. [26] F.X. Li, L. Zeng, L.S. Fan, Biomass direct chemical looping process: Process simulation, Fuel 89(12) (2010) 3773-3784. [27] J.C. Yan, W.D. Liu, R. Sun, S.X. Jiang, S. Wang, L.H. Shen, Chemical looping catalytic gasification of biomass over active LaNixFe1-xO3 perovskites as functional oxygen carriers, Chin. J. Chem. Eng. 36(2021) 146-156. [28] Z. Huang, F. He, H.Q. Zhu, D.Z. Chen, K. Zhao, G.Q. Wei, Y.P. Feng, A.Q. Zheng, Z.L. Zhao, H.B. Li, Thermodynamic analysis and thermogravimetric investigation on chemical looping gasification of biomass char under different atmospheres with Fe2O3 oxygen carrier, Appl. Energy 157(2015) 546-553. [29] P. Jiang, G.H. Zhao, L. Liu, H. Zhang, L.W. Mu, X.H. Lu, J.H. Zhu, A negative-carbon footprint process with mixed biomass feedstock maximizes conversion efficiency, product value and CO2 mitigation, Bioresour. Technol. 351(2022) 127004. [30] Q. Hu, Y. Shen, J.W. Chew, T.S. Ge, C.H. Wang, Chemical looping gasification of biomass with Fe2O3/CaO as the oxygen carrier for hydrogen-enriched syngas production, Chem. Eng. J. 379(2020) 122346. [31] L. Liu, H.L. Qian, L.W. Mu, J. Wu, X. Feng, X.H. Lu, J.H. Zhu, Techno-economic analysis of biomass processing with dual outputs of energy and activated carbon, Bioresour. Technol. 319(2021) 124108. [32] J.M. Zeng, R. Xiao, S. Zhang, H.Y. Zhang, D.W. Zeng, Y. Qiu, Z. Ma, Identifying iron-based oxygen carrier reduction during biomass chemical looping gasification on a thermogravimetric fixed-bed reactor, Appl. Energy 229(2018) 404-412. [33] P. Jiang, G.H. Zhao, H. Zhang, T. Ji, L.W. Mu, X.H. Lu, J.H. Zhu, Towards carbon neutrality of calcium carbide-based acetylene production with sustainable biomass resources, Green Energy Environ. (2022). [34] R. Long, J. Hildebrand, W. Morrell, Peng-Robinson Alpha Functions, Aspen Physical Property System (2008)72. [35] G.C. Su, P. Jiang, H.C. Ong, J.H. Zhu, N.A.S. Amin, N.W.M. Zulkifli, S. Ibrahim, Co-production of biochar and electricity from oil palm wastes for carbon dioxide mitigation in Malaysia, J. Clean. Prod. 423(2023) 138749. [36] Z.H. Zhou, G.S. Deng, L. Li, X. Liu, Z.K. Sun, L.B. Duan, Chemical looping co-conversion of CH4 and CO2 using Fe2O3/Al2O3 pellets as both oxygen carrier and catalyst in a fluidized bed reactor, Chem. Eng. J. 428(2022) 132133. [37] L.J. Heng, H.Y. Zhang, R. Xiao, Hydrogen production from heavy fraction of bio-oil using iron-based chemical looping process: Thermodynamic simulation and performance analysis, Int. J. Hydrog. Energy 41(40) (2016) 17771-17783. [38] Q.Y. Liu, C.S. Hu, B. Peng, C. Liu, Z.W. Li, K. Wu, H.Y. Zhang, R. Xiao, High H2/CO ratio syngas production from chemical looping co-gasification of biomass and polyethylene with CaO/Fe2O3 oxygen carrier, Energy Convers. Manag. 199(2019) 111951. [39] L.J. Heng, R. Xiao, H.Y. Zhang, Life cycle assessment of hydrogen production via iron-based chemical-looping process using non-aqueous phase bio-oil as fuel, Int. J. Greenh. Gas Contr. 76(2018) 78-84. [40] A. Roine, Chemical reaction and equilibrium software with extensive thermo-chemical database. Outokumpu HSC 6.0, Outokumpu HSC 6.0 Chemistry for Windows(2010). [41] M. Halmann, A. Steinfeld, Thermoneutral coproduction of calcium oxide and syngas by combined decomposition of calcium carbonate and partial oxidation/CO2-reforming of methane, Energy Fuels 17(3) (2003) 774-778. [42] C.A. Garcia-Velasquez, C.A. Cardona, Comparison of the biochemical and thermochemical routes for bioenergy production: A techno-economic (TEA), energetic and environmental assessment, Energy 172(2019) 232-242. [43] T. Wei, S.Q. Chen, Dynamic energy and carbon footprints of urban transportation infrastructures: Differentiating between existing and newly-built assets, Appl. Energy 277(2020) 115554. [44] L.J. Heng, H.Y. Zhang, J. Xiao, R. Xiao, Life cycle assessment of polyol fuel from corn stover via fast pyrolysis and upgrading, ACS Sustainable Chem. Eng. 6(2) (2018) 2733-2740. [45] E. Dorr, M. Koegler, B. Gabrielle, C. Aubry, Life cycle assessment of a circular, urban mushroom farm, J. Clean. Prod. 288(2021) 125668. [46] Y. Liao, S.F. Koelewijn, G. Van den Bossche, J. Van Aelst, S. Van den Bosch, T. Renders, K. Navare, T. Nicolai, K. Van Aelst, M. Maesen, H. Matsushima, J.M. Thevelein, K. Van Acker, B. Lagrain, D. Verboekend, B.F. Sels, A sustainable wood biorefinery for low-carbon footprint chemicals production, Science 367(6484) (2020) 1385-1390. [47] X.J. Li, J.Y. Lai, C.Y. Ma, C. Wang, Using BIM to research carbon footprint during the materialization phase of prefabricated concrete buildings: A China study, J. Clean. Prod. 279(2021) 123454. [48] B. Karpan, A.A. Abdul Raman, R. Rahim, M.K.T. Aroua, A. Buthiyappan, Carbon footprint evaluation of industrial wastes based solid fuel in the context of its use in a cement plant, Waste Biomass Valorization 13(8) (2022) 3723-3735. [49] H. Matsuura, F. Tsukihashi, Thermodynamic calculation of generation of H2 gas by reaction between FeO in steelmaking slag and water vapor, ISIJ Int. 52(8) (2012) 1503-1512. [50] H. Yang, S. Kudo, H.P. Kuo, K. Norinaga, A. Mori, O. Masek, J.I. Hayashi, Estimation of enthalpy of bio-oil vapor and heat required for pyrolysis of biomass, Energy Fuels 27(5) (2013) 2675-2686. [51] J.M. Fan, H. Hong, L. Zhu, Q.Q. Jiang, H.G. Jin, Thermodynamic and environmental evaluation of biomass and coal co-fuelled gasification chemical looping combustion with CO2 capture for combined cooling, heating and power production, Appl. Energy 195(2017) 861-876. [52] G.C. Liu, Y. Zhao, S. Heberlein, A. Veksha, A. Giannis, P.C. Wei, T.T. Lim, G. Lisak, Hydrogen and power co-production from autothermal biomass sorption enhanced chemical looping gasification: Thermodynamic modeling and comparative study, Energy Convers. Manag. 269(2022) 116087. |