[1] C.P. Fu, Q.M. She, R. Tesser, C.H. Zhou, Cleaner one-pot transformation of glycerol to acrylic acid and 1,2-propanediol over bifunctional Cu2O/montmorillonite catalysts without external oxygen and hydrogen, Catalysis Science & Technology 12(21) (2022) 6495-6506, https://doi.org/10.1039/d1cy02359d. [2] W.H. Yu, P.P. Wang, C.H. Zhou, H.B. Zhao, D.S. Tong, H. Zhang, H.M. Yang, S.F. Ji, H. Wang, Acid-activated and WOx-loaded montmorillonite catalysts and their catalytic behaviors in glycerol dehydration, Chinese J Catal 38(6) (2017) 1087-1100, https://doi.org/10.1016/s1872-2067(17)62813-4. [3] Q.M. She, J.H. Liu, C. Aymonier, C.H. Zhou, In situ fabrication of layered double hydroxide film immobilizing gold nanoparticles in capillary microreactor for efficient catalytic carbonylation of glycerol, Molecular Catalysis 513(2021) 111825, https://doi.org/10.1016/j.mcat.2021.111825. [4] F.B. Kabwe, J.Q. Zhong, W.J. Huang, C.J. Li, C.H. Zhou, Unveiling the contribution of Mo, V and W oxides to coking in catalytic glycerol oxidehydration, Molecular Catalysis 516(2021) 111969, https://doi.org/10.1016/j.mcat.2021.111969. [5] M.L. Tao, Y.M. Li, X.Y. Zhang, Z.H. Li, C.L. Hill, X.H. Wang, A polyoxometalate-based microfluidic device for liquid-phase oxidation of glycerol, ChemSusChem 12(12) (2019) 2550-2553, https://doi.org/10.1002/cssc.201901057. [6] P.M. Walgode, R.P.V. Faria, A.E. Rodrigues, A review of aerobic glycerol oxidation processes using heterogeneous catalysts: a sustainable pathway for the production of dihydroxyacetone, Catalysis Reviews 63(3) (2020) 422-511, https://doi.org/10.1080/01614940.2020.1747253. [7] D. Motta, F.J.S. Trujillo, N. Dimitratos, A. Villa, L. Prati, An investigation on AuPt and AuPt-Bi on granular carbon as catalysts for the oxidation of glycerol under continuous flow conditions, Catalysis Today 308(2018) 50-57, https://doi.org/10.1016/j.cattod.2017.10.012. [8] H. Tan, C. Yao, T. Zhan, W. Li, J. Zhu, G. Wang, W. Liu, M. Sun, S. Wang, Selective oxidation of glycerol to dihydroxyacetone over N-doped porous carbon stabilized CuxO supported Au catalysts, Molecular Catalysis 498(2020) 111243, https://doi.org/https://doi.org/10.1016/j.mcat.2020.111243. [9] Y.H. Ke, X. Wang, H.Y. Qin, H. Liu, H. Yuan, C.L. Liu, W.S. Dong, Cu-Al composite oxides: a highly efficient support for the selective oxidation of glycerol to 1,3-dihydroxyacetone, New Journal of Chemistry 44(42) (2020) 18173-18184, https://doi.org/10.1039/d0nj02967j. [10] A. Brandner, K. Lehnert, A. Bienholz, M. Lucas, P. Claus, Production of biomass-derived chemicals and energy: chemocatalytic conversions of glycerol, Topics in Catalysis 52(3) (2009) 278-287, https://doi.org/10.1007/s11244-008-9164-2. [11] X. Duan, Y. Zhang, M. Pan, H. Dong, B. Chen, Y. Ma, G. Qian, X. Zhou, J. Yang, D. Chen, SbOx-promoted pt nanoparticles supported on CNTs as catalysts for base-free oxidation of glycerol to dihydroxyacetone, AIChE Journal 64(11) (2018) 3979-3987, https://doi.org/10.1002/aic.16217. [12] B. Sarkar, C. Pendem, L.N. Sivakumar Konathala, R. Tiwari, T. Sasaki, R. Bal, Cu nanoclusters supported on nanocrystalline SiO2-MnO2: A bifunctional catalyst for the one-step conversion of glycerol to acrylic acid, Chemical Communications 50(68) (2014) 9707-9710, https://doi.org/10.1039/c4cc03842h. [13] J. Mazario, P. Concepcion, M. Ventura, M.E. Domine, Continuous catalytic process for the selective dehydration of glycerol over Cu-based mixed oxide, Journal of Catalysis 385(2020) 160-175, https://doi.org/10.1016/j.jcat.2020.03.010. [14] R. Munirathinam, J. Huskens, W. Verboom, Supported catalysis in continuous-flow microreactors, Advanced Synthesis & Catalysis 357(6) (2015) 1093-1123, https://doi.org/10.1002/adsc.201401081. [15] J. Kobayashi, Y. Mori, K. Okamoto, R. Akiyama, M. Ueno, T. Kitamori, S. Kobayashi, A microfluidic device for conducting gas-liquid-solid hydrogenation reactions, Science 304(5675) (2004) 1305-1308. [16] T. Maki, J.I. Kitada, K. Mae, Preparation and control of the size distribution of zirconia nanoparticles in a concentric-axle dual-pipe microreactor, Chemical Engineering & Technology 36(6) (2013) 1027-1032, https://doi.org/10.1002/ceat.201200627. [17] G. Wirnsberger, B.J. Scott, G.D. Stucky, pH Sensing with mesoporous thin films, Chemical Communications (1) (2001) 119-120, https://doi.org/10.1039/b003995k. [18] C. Schotten, T.P. Nicholls, R.A. Bourne, N. Kapur, B.N. Nguyen, C.E. Willans, Making electrochemistry easily accessible to the synthetic chemist, Green Chemistry 22(11) (2020) 3358-3375, https://doi.org/10.1039/d0gc01247e. [19] B. Gutmann, D. Cantillo, C.O. Kappe, Continuous-flow technology-A tool for the safe manufacturing of active pharmaceutical ingredients, Angewandte Chemie International Edition 54(23) (2015) 6688-6728, https://doi.org/10.1002/anie.201409318. [20] A. Delparish, S. Koc, B.S. Caglayan, A.K. Avci, Oxidative steam reforming of glycerol to synthesis gas in a microchannel reactor, Catalysis Today 323(2019) 200-208, https://doi.org/10.1016/j.cattod.2018.03.047. [21] S. Koc, A.K. Avci, Reforming of glycerol to hydrogen over Ni-based catalysts in a microchannel reactor, Fuel Processing Technology 156(2017) 357-365, https://doi.org/10.1016/j.fuproc.2016.09.019. [22] A. Tanimu, S. Jaenicke, K. Alhooshani, Heterogeneous catalysis in continuous flow microreactors: A review of methods and applications, Chemical Engineering Journal 327(2017) 792-821, https://doi.org/10.1016/j.cej.2017.06.161. [23] R.L. Anderson, I. Ratcliffe, H.C. Greenwell, P.A. Williams, S. Cliffe, P.V. Coveney, Clay swelling - A challenge in the oilfield, Earth-Science Reviews 98(3-4) (2010) 201-216, https://doi.org/10.1016/j.earscirev.2009.11.003. [24] R.L. Zhu, Q.Z. Chen, Q. Zhou, Y.F. Xi, J.X. Zhu, H.P. He, Adsorbents based on montmorillonite for contaminant removal from water: A review, Applied Clay Science 123(2016) 239-258, https://doi.org/10.1016/j.clay.2015.12.024. [25] S. Guggenheim, J.M. Adams, D.C. Bain, F. Bergaya, M.F. Brigatti, V.A. Drits, M.L.L. Formoso, E. Galan, T. Kogure, H. Stanjek, Summary of recommendations of nomenclature committees relevant to clay mineralogy: report of the association internationale pour l'Etude des argiles (AIPEA) nomenclature committee for 2006, Clay Minerals 41(4) (2006) 863-877. [26] I. Boshnakova, E. Lefterova, E. Slavcheva, Investigation of montmorillonite as carrier for OER, International Journal of Hydrogen Energy 43(35) (2018) 16897-16904, https://doi.org/10.1016/j.ijhydene.2018.01.012. [27] X.X. Chen, J.H. Liu, A. Kurniawan, K.J. Li, C.H. Zhou, Inclusion of organic species in exfoliated montmorillonite nanolayers towards hierarchical functional inorganic-organic nanostructures, Soft Matter 17(43) (2021) 9819-9841, https://doi.org/10.1039/d1sm00975c. [28] Y.Q. Zhang, A. Sanati-Nezhad, S.H. Hejazi, Geo-material surface modification of microchips using layer-by-layer (LbL) assembly for subsurface energy and environmental applications, Lab on a Chip 18(2) (2018) 285-295, https://doi.org/10.1039/c7lc00675f. [29] J.J. Li, S. Srivastava, J.G. Ok, Y.Y. Zhang, M. Bedewy, N.A. Kotov, A.J. Hart, Multidirectional hierarchical nanocomposites made by carbon nanotube growth within layer-by-layer-assembled films, Chemistry of Materials 23(4) (2011) 1023-1031, https://doi.org/10.1021/cm1030443. [30] K. Ariga, Y. Lvov, I. Ichinose, T. Kunitake, Ultrathin films of inorganic materials (SiO2 nanoparticle, montmorillonite microplate, and molybdenum oxide) prepared by alternate layer-by-layer assembly with organic polyions, Applied Clay Science 15(1999) 137-152. [31] Y. Lvov, K. Ariga, I. Ichinose, T. Kunitake, Formation of ultrathin multilayer and hydrated gel from montmorillonite and linear polycations, Langmuir 12(1996) 3038-3044. [32] D. Hetemi, J. Pinson, Surface functionalisation of polymers, Chemical Society Review 46(19) (2017) 5701-5713, https://doi.org/10.1039/c7cs00150a. [33] Q. Liu, L.H. Yao, Q.P. Shen, Z. Nie, M.L. Guo, S.Z. Yao, Layer-by-layer assembly of polyelectrolyte and nanoparticles, monitored by capillary electrophoresis, Chemistry-a European Journal 15(46) (2009) 12828-12836, https://doi.org/10.1002/chem.200901998. [34] S. Zhang, Y.Y. Ma, H. Zhang, X.M. Zhou, X. Chen, Y.Q. Qu, Additive-free, robust H2 production from H2O and DMF by dehydrogenation catalyzed by Cu/Cu2O formed in situ, Angewandte Chemie International Edition 56(28) (2017) 8245-8249, https://doi.org/10.1002/anie.201704381. [35] Y.H. Miao, W.J. Peng, W. Wang, Y.J. Cao, H.Y. Li, L.P. Chang, Y.K. Huang, G.X. Fan, H. Yi, Y.L. Zhao, T.T. Zhang, 3D-printed montmorillonite nanosheets based hydrogel with biocompatible polymers as excellent adsorbent for Pb(Ⅱ) removal, Separation and Purification Technology 283(2022) 120176, https://doi.org/10.1016/j.seppur.2021.120176. [36] Z.J. Gong, L.B. Liao, G.C. Lv, X.Y. Wang, A simple method for physical purification of bentonite, Applied Clay Science 119(2016) 294-300, https://doi.org/10.1016/j.clay.2015.10.031. [37] L.M. Wu, D.S. Tong, C.S. Li, S.F. Ji, C.X. Lin, H.M. Yang, Z.K. Zhong, C.Y. Xu, W.H. Yu, C.H. Zhou, Insight into formation of montmorillonite-hydrochar nanocomposite under hydrothermal conditions, Applied Clay Science 119(2016) 116-125, https://doi.org/10.1016/j.clay.2015.06.015. [38] R.B. Gao, Y.L. Zhao, L.C. Chen, J.C. Fu, J.F. Ma, J.R. Wang, K. Aise Rody, S.X. Song, T.T. Zhang, Mechanisms of novel method for removing cristobalite from montmorillonite through exfoliation of 2D montmorillonite, Separation and Purification Technology 306(2023) 122730, https://doi.org/10.1016/j.seppur.2022.122730. [39] H.W. Yan, Z.P. Zhang, Effect and mechanism of cation species on the gel properties of montmorillonite, Colloids and Surfaces a-Physicochemical and Engineering Aspects 611(2021) 125824, https://doi.org/10.1016/j.colsurfa.2020.125824. [40] L. Zatta, L.P. Ramos, F. Wypych, Acid-activated montmorillonites as heterogeneous catalysts for the esterification of lauric acid acid with methanol, Applied Clay Science 80-81(2013) 236-244. [41] R.B. Gao, Y.L. Zhao, L.C. Chen, T.T. Zhang, Y.H. Miao, Y.K. Zhou, S.X. Song, Effect of exfoliation degree on the performance of montmorillonite nanosheets, Colloids and Surfaces A: Physicochemical and Engineering Aspects 650(2022) 129661, https://doi.org/10.1016/j.colsurfa.2022.129661. [42] R.S. Dubey, Y.B.R.D. Rajesh, M.A. More, Synthesis and characterization of SiO2 nanoparticles via sol-gel method for industrial applications, Materials Today: Proceedings 2(4-5) (2015) 3575-3579, https://doi.org/10.1016/j.matpr.2015.07.098. [43] P. Deshmukh, J. Bhatt, D. Peshwe, S. Pathak, Determination of silica activity index and XRD, SEM and EDS studies of amorphous SiO2 extracted from rice husk ash, Transactions of the Indian Institute of Metals 65(1) (2011) 63-70, https://doi.org/10.1007/s12666-011-0071-z. [44] P.L. He, N.F. Hu, G. Zhou, Assembly of electroactive layer-by-layer films of hemoglobin and polycationic poly(diallyldimethylammonium), Biomacromolecules 3(1) (2002) 139-146. [45] E.M. Serwicka, M. Zimowska, D. Duraczynska, B.D. Napruszewska, M. Nattich-Rak, G. Mordarski, L. Litynska-Dobrzynska, H. Palkova, PDDA-montmorillonite composites loaded with Ru nanoparticles: Synthesis, characterization, and catalytic properties in hydrogenation of 2-butanone, Polymers (Basel) 10(8) (2018) 1-15, https://doi.org/10.3390/polym10080865. [46] M.A. Priolo, K.M. Holder, D. Gamboa, J.C. Grunlan, Influence of clay concentration on the gas barrier of clay-polymer nanobrick wall thin film assemblies, Langmuir 27(19) (2011) 12106-12114, https://doi.org/10.1021/la201584r. [47] B.v. Duffel, R.A. Schoonheydt, Multilayered clay films: Atomic force microscopy study and modeling, Langmuir 15(1999) 7520-7529. [48] M.A. Bhosale, B.M. Bhanage, A simple approach for sonochemical synthesis of Cu2O nanoparticles with high catalytic properties, Advanced Powder Technology 27(1) (2016) 238-244, https://doi.org/10.1016/j.apt.2015.12.008. [49] I. Prakash, P. Muralidharan, N. Nallamuthu, M. Venkateswarlu, N. Satyanarayana, Preparation and characterization of nanocrystallite size cuprous oxide, Materials Research Bulletin 42(9) (2007) 1619-1624, https://doi.org/10.1016/j.materresbull.2006.11.038. [50] M.A. Bhosale, K.D. Bhatte, B.M. Bhanage, A rapid, one pot microwave assisted synthesis of nanosize cuprous oxide, Powder Technology 235(2013) 516-519, https://doi.org/10.1016/j.powtec.2012.11.006. [51] S.M. Lian, L.N. Gao, M.M. Chen, Z.X. Liu, J. Qiu, X. Zhang, X.L. Luo, R.C. Zeng, Q.Y. Liu, Enhanced peroxidase-like activity of MMT-supported cuprous oxide nanocomposites toward rapid colorimetric estimation of H2O2, Applied Organometallic Chemistry 33(2) (2019) e4716, https://doi.org/10.1002/aoc.4716. [52] M.F. Zayed, W.H. Eisa, B. Anis, Gallic acid-assisted growth of cuprous oxide within polyvinyl alcohol; a separable catalyst for oxidative and reductive degradation of water pollutants, Journal of Cleaner Production 279(2021) 123826, https://doi.org/10.1016/j.jclepro.2020.123826. [53] T. Ebina, T. Iwasaki, A. Chatterjee, Comparative study of XPS and DFT with reference to the distributions of Al in tetrahedral and octahedral sheets of phyllosilicates, Journal of Physical Chemistry B 101(1997) 1125-1129. [54] Q.M. She, M.Y. Qiu, K.J. Li, J.H. Liu, C.H. Zhou, Acidic and basic sites on the surface of sodium montmorillonite active for catalytic transesterification of glycerol to glycerol carbonate, Applied Clay Science 238(2023) 106916, https://doi.org/10.1016/j.clay.2023.106916. [55] R. Hutter, T. Mallat, A. Baiker, Titania-silica mixed oxides Ⅲ. Epoxidation of alpha-isophorone with hydroperoxides, journal of Catalysis 157(2) (1995) 665-675. [56] R.A.L. Baylon, J.m. Sun, L. Kovarik, M. Engelhard, H.q. Li, A.D. Winkelman, Y. Wang, Structural identification of ZnxZryOz catalysts for Cascade aldolization and self-deoxygenation reactions, Applied Catalysis B: Environmental 234(2018) 337-346, https://doi.org/10.1016/j.apcatb.2018.04.051. [57] B. Zhao, Y. Men, A.n. Zhang, J.g. Wang, R. He, W. An, S.x. Li, Influence of different precursors on isobutene production from bio-ethanol over bifunctional Zn1Zr10Ox catalysts, Applied Catalysis A: General 558(2018) 150-160, https://doi.org/10.1016/j.apcata.2018.04.003. [58] S.X. Li, Y. Men, J.G. Wang, S. Liu, X.F. Wang, F. Ji, S.S. Chai, Q.L. Song, Morphological control of inverted MgO-SiO2 composite catalysts for efficient conversion of ethanol to 1,3-butadiene, Applied Catalysis A: General 577(2019) 1-9, https://doi.org/10.1016/j.apcata.2019.03.007. [59] J. Yu, W.M. Chen, F. He, W.G. Song, C.Y. Cao, Electronic oxide-support strong interactions in the graphdiyne-supported cuprous oxide nanocluster catalyst, journal of the American Chemical Society 145(3) (2023) 1803-1810, https://doi.org/10.1021/jacs.2c10976. [60] J. Han, J. Chang, R. Wei, X.H. Ning, J. Li, Z.X. Li, H.L. Guo, Y. Yang, Mechanistic investigation on tuning the conductivity type of cuprous oxide (Cu2O) thin films via deposition potential, International Journal of Hydrogen Energy 43(30) (2018) 13764-13777, https://doi.org/10.1016/j.ijhydene.2018.02.121. [61] P. McMorn, G. Roberts, G. Hutchings, Oxidation of glycerol with hydrogen peroxide using silicalite and aluminophosphate catalysts, Catalysis Letters 63(1999) 193-197. [62] G.M. Lari, C. Mondelli, J. Perez-Ramirez, Gas-phase oxidation of glycerol to dihydroxyacetone over tailored iron zeolites, Acs Catal 5(3) (2015) 1453-1461, https://doi.org/10.1021/cs5019056. [63] C. Crotti, E. Farnetti, Selective oxidation of glycerol catalyzed by iron complexes, Journal of Molecular Catalysis A: Chemical 396(2015) 353-359, https://doi.org/10.1016/j.molcata.2014.10.021. [64] N. Gupta, O. Khavryuchenko, A. Villa, D. Su, Metal-free oxidation of glycerol over nitrogen-containing carbon nanotubes, ChemSusChem 10(15) (2017) 3030-3034, https://doi.org/10.1002/cssc.201700940. |