[1] H.M. Sun, J.T. Yang, H.W. Zhang, Q. Yang, S.Z. Wu, Y.X. Wang, H.B. Zhu, Y.Y. Yue, T.H. Wang, P. Yuan, Hierarchical flower-like NiCu/SiO2 bimetallic catalysts with enhanced catalytic activity and stability for petroleum resin hydrogenation, Ind. Eng. Chem. Res. 60(15)(2021)5432-5442. [2] J.J. Li, Z.Q. Zhang, G.F. Qin, X.D. Tang, C.X. Xiang, Fe/HZSM-5 catalytic pyrolysis cellulose as hydrogen donor for the upgrading of heavy crude oil by one-pot process, Fuel 298(2021)120880. [3] R. Saab, K. Polychronopoulou, L.X. Zheng, S. Kumar, A. Schiffer, Synthesis and performance evaluation of hydrocracking catalysts:a review, J. Ind. Eng. Chem. 89(2020)83-103. [4] M. Marafi, A. Stanislaus, Spent catalyst waste management:a review, Resour. Conserv. Recycl. 52(6)(2008)859-873. [5] H. Al-Sheeha, M. Marafi, V. Raghavan, M.S. Rana, Recycling and recovery routes for spent hydroprocessing catalyst waste, Ind. Eng. Chem. Res. 52(36)(2013)12794-12801. [6] A. Tanimu, K. Alhooshani, Advanced hydrodesulfurization catalysts:a review of design and synthesis, Energy Fuels 33(4)(2019)2810-2838. [7] S. Bag, A.F. Gaudette, M.E. Bussell, M.G. Kanatzidis, Spongy chalcogels of non-platinum metals act as effective hydrodesulfurization catalysts, Nat. Chem. 1(3)(2009)217-224. [8] Y.C. Lai, W.J. Lee, K.L. Huang, C.M. Wu, Metal recovery from spent hydrodesulfurization catalysts using a combined acid-leaching and electrolysis process, J. Hazard. Mater. 154(1-3)(2008)588-594. [9] H. Wu, S.Y. Duan, D.D. Liu, X.F. Guo, A.F. Yi, H.R. Li, Recovery of nickel and molybdate from ammoniacal leach liquor of spent hydrodesulfurization catalyst using LIX84 extraction, Sep. Purif. Technol. 269(2021)118750. [10] M. Marafi, A. Stanislaus, Waste catalyst utilization:extraction of valuable metals from spent hydroprocessing catalysts by ultrasonic-assisted leaching with acids, Ind. Eng. Chem. Res. 50(16)(2011)9495-9501. [11] N.M. Al-Mansi, M.N.M. Abdel, Recovery of nickel oxide from spent catalyst, Waste Manag. 22(1)(2002)85-90. [12] J.L. Liu, C.Y. Wang, X.R. Wang, C. Zhao, H.Q. Li, G.Y. Zhu, J.B. Zhang, Reconstruction and recovery of anatase TiO2 from spent selective catalytic reduction catalyst by NaOH hydrothermal method, Chin. J. Chem. Eng. 60(2023)53-60. [13] S.P. Barik, K.H. Park, P.K. Parhi, J.T. Park, C.W. Nam, Extraction of metal values from waste spent petroleum catalyst using acidic solutions, Sep. Purif. Technol. 101(2012)85-90. [14] J.Z. Wang, S.N. Wang, A. Olayiwola, N. Yang, B. Liu, J.J. Weigand, M. Wenzel, H. Du, Recovering valuable metals from spent hydrodesulfurization catalyst via blank roasting and alkaline leaching, J. Hazard. Mater. 416(2021)125849. [15] G.H. Li, D.P. Shi, H. Sun, Q.Z. Bu, J. Luo, M.J. Rao, Z.W. Peng, T. Jiang, Effects and mechanisms of ternary solution of NaOH-Na2CO3-Na2SO4 on the recovery of molybdenum from residues containing multiple molybdates, Sep. Purif. Technol. 248(2020)117059. [16] S.J. Zhao, Z.Q. Liao, Y. Xie, X.S. Li, Y.Y. Dai, Z.R. Li, M.Y. Wang, Extraction of molybdenum from spent HDS catalyst by pressure alkaline leaching, J. Sustain. Metall. 7(3)(2021)773-782. [17] Y.W. Wang, Z.Q. Wang, J.J. Huang, Y.T. Fang, Improved catalyst recovery combined with extracting alumina from Na2CO3-catalyzed gasification ash of a high-aluminium coal char, Fuel 234(2018)101-109. [18] M. Marafi, M.S. Rana, H. Al-Sheeha, The recovery of valuable metals and recycling of alumina from a waste spent hydroprocessing catalyst:Extraction with Na saltsWIT Transactions on Ecology and the Environment,Waste Management and the Environment VII. Ancona, Italy, WIT Press, Southampton, UK, 2014. [19] E. Kordouli, B. Pawelec, K. Bourikas, C. Kordulis, J.L.G. Fierro, A. Lycourghiotis, Mo promoted Ni-Al2O3 co-precipitated catalysts for green diesel production, Appl. Catal. B Environ. 229(2018)139-154. [20] A. Siahvashi, D. Chesterfield, A.A. Adesina, Nonoxidative and oxidative propane dehydrogenation over bimetallic Mo-Ni/Al2O3 catalyst, Ind. Eng. Chem. Res. 52(11)(2013)4017-4026. [21] L. Qu, C.T. Li, G.M. Zeng, M.Y. Zhang, M.F. Fu, J.F. Ma, F.M. Zhan, D.Q. Luo, Support modification for improving the performance of MnOx-CeOy/γ-Al2O3 in selective catalytic reduction of NO by NH3, Chem. Eng. J. 242(2014)76-85. [22] J.M. Rynkowski, T. Paryjczak, M. Lenik, On the nature of oxidic nickel phases in NiO/γ-Al2O3 catalysts, Appl. Catal. A Gen. 106(1)(1993)73-82. [23] C. Volkringer, H. Leclerc, J.C. Lavalley, T. Loiseau, G. Ferey, M. Daturi, A. Vimont, Infrared spectroscopy investigation of the acid sites in the metal-organic framework aluminum trimesate MIL-100(Al), J. Phys. Chem. C 116(9)(2012)5710-5719. [24] A. Travert, C. Dujardin, F. Mauge, E. Veilly, S. Cristol, J.F. Paul, E. Payen, CO adsorption on CoMo and NiMo sulfide catalysts:a combined IR and DFT study, J. Phys. Chem. B 110(3)(2006)1261-1270. [25] K. Hadjiivanov, H. Knozinger, M. Mihaylov, FTIR study of CO adsorption on Ni-ZSM-5, J. Phys. Chem. B 106(10)(2002)2618-2624. [26] B.M. Vogelaar, N. Kagami, T.F. van der Zijden, A.D. van Langeveld, S. Eijsbouts, J.A. Moulijn, Relation between sulfur coordination of active sites and HDS activity for Mo and NiMo catalysts, J. Mol. Catal. A Chem. 309(1-2)(2009)79-88. [27] Q.Y. Zhao, X.L. Hou, J.L. Wang, D.G. Cheng, F.Q. Chen, X.L. Zhan, Engineering specific Mo-O bond stretching to activate lattice oxygen in V-doped Bi2MoO6 for enhanced oxidative dehydrogenation of 1-butene, Ind. Eng. Chem. Res. 62(1)(2023)329-340. [28] C.I. Vargas-Consuelos, M.A. Camacho-López, V.H. Ramos-Sanchez, O.A. Graeve, Phase and morphology control of hexagonal MoO3 crystals via Na+interactions:a Raman spectroscopy study, J. Phys. Chem. C 127(27)(2023)13136-13148. [29] B. Courcot, A.J. Bridgeman, Structural and vibrational study of[Mo7O24] 6-and[W7O24]6-, J. Phys. Chem. A 113(39)(2009)10540-10548. [30] W.G. Klemperer, W. Shum, Synthesis and interconversion of the isomeric.alpha.-and.beta.-molybdate (Mo8O264-) ions, J. Am. Chem. Soc. 98(25)(1976)8291-8293. [31] C.H. Liu, Q. Wei, Y.S. Zhou, X.Y. Liu, K.X. Deng, W.B. Huang, H.R. Liu, Z.Q. Yu, A study on the role of Ti/Si atomic ratios in the hydrodenitrogenation activity of NiMo/TiO2-SiO2 catalyst, Fuel 338(2023)126922. [32] A. Karmakar, K. Karthick, S.S. Sankar, S. Kumaravel, M. Ragunath, S. Kundu, Oxygen vacancy enriched NiMoO4 nanorods via microwave heating:a promising highly stable electrocatalyst for total water splitting, J. Mater. Chem. A, 9(2021)11691-11704. |