[1] T.K. Ha, D. Kim, C.L. Kim, L.M. Grav, G.M. Lee, Factors affecting the quality of therapeutic proteins in recombinant Chinese hamster ovary cell culture, Biotechnol. Adv. 54 (2022) 107831. https://doi.org/10.1016/j.biotechadv.2021.107831. [2] Z. Liu, X. Jiang, S. Li, J. Chen, C. Jiang, K. Wang, C. Zhang, B. Wang, A disposable impedance-based sensor for in-line cell growth monitoring in CAR-T cell manufacturing, Bioelectrochem 152 (2023) 108416. https://doi.org/10.1016/j.bioelechem.2023.108416. [3] S. Dahotre, L. Dai, K. Kjenstad, C. Stella, J. Camperi, Real-time monitoring of antibody quality attributes for cell culture production processes in bioreactors via integration of an automated sampling technology with multi-dimensional liquid chromatography mass spectrometry, Journal of Chromatography A 1672 (2022) 463067. https://doi.org/10.1016/j.chroma.2022.463067. [4] J. Randek, C.-F. Mandenius, In situ scanning capacitance sensor with spectral analysis reveals morphological states in cultures for production of biopharmaceuticals, Sensors and Actuators B: Chemical 313 (2020) 128052. https://doi.org/10.1016/j.snb.2020.128052. [5] M. Lederle, M. Tric, T. Roth, L. Schutte, A. Rattenholl, D. Lutkemeyer, S. Wolfl, T. Werner, P. Wiedemann, Continuous optical in-line glucose monitoring and control in CHO cultures contributes to enhanced metabolic efficiency while maintaining darbepoetin alfa product quality, Biotechnology Journal 16 (2021) 2100088. https://doi.org/10.1002/biot.202100088. [6] M. Tric, M. Lederle, L. Neuner, I. Dolgowjasow, P. Wiedemann, S. Wolfl, T. Werner, Optical biosensor optimized for continuous in-line glucose monitoring in animal cell culture, Anal Bioanal Chem 409 (2017) 5711-5721. https://doi.org/10.1007/s00216-017-0511-7. [7] D.P. Wasalathanthri, M.S. Rehmann, Y. Song, Y. Gu, L. Mi, C. Shao, L. Chemmalil, J. Lee, S. Ghose, M.C. Borys, J. Ding, Z.J. Li, Technology outlook for real-time quality attribute and process parameter monitoring in biopharmaceutical development-A review, Biotechnol. Bioeng 117 (2020) 3182-3198. https://doi.org/10.1002/bit.27461. [8] A. Guerra, M. von Stosch, J. Glassey, Toward biotherapeutic product real-time quality monitoring, Crit. Rev. Biotechnol 39 (2019) 289-305. https://doi.org/10.1080/07388551.2018.1524362. [9] K.A. Esmonde-White, M. Cuellar, I.R. Lewis, The role of Raman spectroscopy in biopharmaceuticals from development to manufacturing, Anal Bioanal Chem 414 (2022) 969-991. https://doi.org/10.1007/s00216-021-03727-4. [10] A. Yousefi-Darani, O. Paquet-Durand, A. Von Wrochem, J. Classen, J. Trankle, M. Mertens, J. Snelders, V. Chotteau, M. Makinen, A. Handl, M. Kadisch, D. Lang, P. Dumas, B. Hitzmann, Generic Chemometric Models for Metabolite Concentration Prediction Based on Raman Spectra, Sensors 22 (2022) 5581. https://doi.org/10.3390/s22155581. [11] L. Gibbons, C. Rafferty, K. Robinson, M. Abad, F. Maslanka, N. Le, J. Mo, K. Clark, F. Madden, R. Hayes, B. McCarthy, C. Rode, J. O’Mahony, R. Rea, C. O’Mahony Hartnett, Raman based chemometric model development for glycation and glycosylation real time monitoring in a manufacturing scale CHO cell bioreactor process, Biotechnol. Progr 38 (2022). https://doi.org/10.1002/btpr.3223. [12] Z. Liu, Z. Zhang, Y. Qin, G. Chen, J. Hu, Q. Wang, W. Zhou, The application of Raman spectroscopy for monitoring product quality attributes in perfusion cell culture, Biochem. Eng. J. 173 (2021) 108064. https://doi.org/10.1016/j.bej.2021.108064. [13] C. Rafferty, J. O’Mahony, B. Burgoyne, R. Rea, K.M. Balss, D.C. Latshaw II, Raman spectroscopy as a method to replace off-line pH during mammalian cell culture processes, Biotechnol. Bioeng 117 (2020) 146-156. https://doi.org/10.1002/bit.27197. [14] S. Andre, S. Lagresle, Z. Hannas, E. Calvosa, L. Duponchel, Mammalian cell culture monitoring using in situ spectroscopy: Is your method really optimised?, Biotechnol. Progr. 33 (2017) 308-316. https://doi.org/10.1002/btpr.2430. [15] H. Schwarz, M.E. Makinen, A. Castan, V. Chotteau, Monitoring of amino acids and antibody N-glycosylation in high cell density perfusion culture based on Raman spectroscopy, Biochem. Eng. J. 182 (2022) 108426. https://doi.org/10.1016/j.bej.2022.108426. [16] A. Tulsyan, H. Khodabandehlou, T. Wang, G. Schorner, M. Coufal, C. Undey, Spectroscopic models for real-time monitoring of cell culture processes using spatiotemporal just-in-time Gaussian processes, AIChE J. 67 (2021)1-17. [17] A. Tulsyan, G. Schorner, H. Khodabandehlou, T. Wan, M. Coufal, C. Undey, A machine-learning approach to calibrate generic Raman models for real-time monitoring of cell culture processes, Biotechnol. Bioeng. 116 (2019) 2575-2586. https://doi.org/10.1002/bit.27100. [18] A. Tulsyan, T. Wang, G. Schorner, H. Khodabandehlou, M. Coufal, C. Undey, Automatic real-time calibration, assessment, and maintenance of generic Raman models for online monitoring of cell culture processes, Biotechnol. Bioeng. 117 (2020) 406-416. https://doi.org/10.1002/bit.27205. [19] J. Domjan, E. Pantea, M. Gyurkes, L. Madarasz, D. Kozak, A. Farkas, B. Horvath, Z. Benkő, Z.K. Nagy, G. Marosi, E. Hirsch, Real-time amino acid and glucose monitoring system for the automatic control of nutrient feeding in CHO cell culture using Raman spectroscopy, Biotechnol. J. 17 (2022) 2100395. https://doi.org/10.1002/biot.202100395. [20] T.A. Webster, B.C. Hadley, M. Dickson, J.K. Busa, C. Jaques, C. Mason, Feedback control of two supplemental feeds during fed-batch culture on a platform process using inline Raman models for glucose and phenylalanine concentration, Bioprocess. Biosyst. Eng. 44 (2021) 127-140. https://doi.org/10.1007/s00449-020-02429-y. [21] C. Rafferty, J. O’Mahony, R. Rea, B. Burgoyne, K.M. Balss, O. Lyngberg, C. O’Mahony-Hartnett, D. Hill, E. Schaefer, Raman spectroscopic based chemometric models to support a dynamic capacitance based cell culture feeding strategy, Bioprocess. Biosyst. Eng. 43 (2020) 1415-1429. https://doi.org/10.1007/s00449-020-02336-2. [22] E. Hirsch, H. Pataki, J. Domjan, A. Farkas, P. Vass, C. Feher, Z. Barta, Z.K. Nagy, G.J. Marosi, I. Csontos, Inline noninvasive Raman monitoring and feedback control of glucose concentration during ethanol fermentation, Biotechnol. Prog. 35 (2019). https://doi.org/10.1002/btpr.2848. [23] T.E. Matthews, B.N. Berry, J. Smelko, J. Moretto, B. Moore, K. Wiltberger, Closed loop control of lactate concentration in mammalian cell culture by Raman spectroscopy leads to improved cell density, viability, and biopharmaceutical protein production, Biotechnol. Bioeng. 113 (2016) 2416-2424. https://doi.org/10.1002/bit.26018. [24] J. Domjan, A. Fricska, L. Madarasz, M. Gyurkes, A. Kote, A. Farkas, P. Vass, C. Feher, B. Horvath, K. Konczol, H. Pataki, Z.K. Nagy, G.J. Marosi, E. Hirsch, Raman-based dynamic feeding strategies using real-time glucose concentration monitoring system during adalimumab producing CHO cell cultivation, Biotechnol. Progr. 36 (2020) e3052. https://doi.org/10.1002/btpr.3052. [25] T. Eyster, S. Talwar, J. Fernandez, S. Foster, J. Hayes, R. Allen, S. Reidinger, B. Wan, X. Ji, J. Aon, P. Patel, D.B. Ritz, Tuning monoclonal antibody galactosylation using Raman spectroscopy-controlled lactic acid feeding, Biotechnol. Progr. 37 (2021). https://doi.org/10.1002/btpr.3085. [26] G. Chen, J. Hu, Y. Qin, W. Zhou, Viable cell density on-line auto-control in perfusion cell culture aided by in-situ Raman spectroscopy, Biochem. Eng. J. 172 (2021) 108063. https://doi.org/10.1016/j.bej.2021.108063. [27] T. Basar, A New Approach to Linear Filtering and Prediction Problems, A New Approach to Linear Filtering and Prediction Problems, 2009. https://doi.org/10.1109/9780470544334.ch9. [28] Q. Li, R. Li, K. Ji, W. Dai, Kalman Filter and Its Application, in: 2015 8th International Conference on Intelligent Networks and Intelligent Systems (ICINIS), 2015: pp. 74-77. https://doi.org/10.1109/ICINIS.2015.35. [29] P. Teppola, S.-P. Mujunen, P. Minkkinen, Kalman filter for updating the coefficients of regression models. A case study from an activated sludge waste-water treatment plant, Chemom. Intell. Lab. Syst 45 (1999) 371-384. https://doi.org/10.1016/S0169-7439(98)00145-2. [30] Q.-P. Mei, T.-F. Li, L.-Z. Yao, D. Huang, Y.-L. Yang, Study of an adaptable calibration model of near-infrared spectra based on KF-PLS, Chemom. Intell. Lab. Syst 157 (2016) 152-161. https://doi.org/10.1016/j.chemolab.2016.07.008. [31] J. Engel, J. Gerretzen, E. Szymanska, J.J. Jansen, G. Downey, L. Blanchet, L.M.C. Buydens, Breaking with trends in pre-processing?, TrAC, Trends Anal. Chem 50 (2013) 96-106. https://doi.org/10.1016/j.trac.2013.04.015. [32] J. Gerretzen, E. Szymanska, J. Bart, A.N. Davies, H.-J. van Manen, E.R. van den Heuvel, J.J. Jansen, L.M.C. Buydens, Boosting model performance and interpretation by entangling preprocessing selection and variable selection, Analytica Chimica Acta 938 (2016) 44-52. https://doi.org/10.1016/j.aca.2016.08.022. [33] J. Gerretzen, E. Szymanska, J.J. Jansen, J. Bart, H.-J. van Manen, E.R. van den Heuvel, L.M.C. Buydens, Simple and Effective Way for Data Preprocessing Selection Based on Design of Experiments, Anal. Chem. 87 (2015) 12096-12103. https://doi.org/10.1021/acs.analchem.5b02832. [34] N.K. Afseth, V.H. Segtnan, J.P. Wold, Raman spectra of biological samples: A study of preprocessing methods, Appl. Spectrosc. 60 (2006) 1358-1367. https://doi.org/10.1366/000370206779321454. [35] S. Andre, S. Lagresle, A. Da Sliva, P. Heimendinger, Z. Hannas, E. Calvosa, L. Duponchel, Developing global regression models for metabolite concentration prediction regardless of cell line: Developing Global Regression Models, Biotechnol. Bioeng. 114 (2017) 2550-2559. https://doi.org/10.1002/bit.26368. [36] C. Rafferty, K. Johnson, J. O’Mahony, B. Burgoyne, R. Rea, K.M. Balss, Analysis of chemometric models applied to Raman spectroscopy for monitoring key metabolites of cell culture, Biotechnol. Progr. 36 (2020) e2977. https://doi.org/10.1002/btpr.2977. [37] M. Koch, C. Suhr, B. Roth, M. Meinhardt-Wollweber, Iterative morphological and mollifier-based baseline correction for Raman spectra, J. Raman Spectrosc. 48 (2017) 336-342. https://doi.org/10.1002/jrs.5010. [38] H.-D. Li, Q.-S. Xu, Y.-Z. Liang, libPLS: An integrated library for partial least squares regression and linear discriminant analysis, Chemometrics Intell. Lab. Syst. 176 (2018) 34-43. https://doi.org/10.1016/j.chemolab.2018.03.003. [39] B.N. Berry, T.M. Dobrowsky, R.C. Timson, R. Kshirsagar, T. Ryll, K. Wiltberger, Quick generation of Raman spectroscopy based in-process glucose control to influence biopharmaceutical protein product quality during mammalian cell culture, Biotechnol. Prog. 32 (2016) 224-234. https://doi.org/10.1002/btpr.2205. |