中国化学工程学报 ›› 2024, Vol. 70 ›› Issue (6): 33-53.DOI: 10.1016/j.cjche.2024.03.001
B. A. Abdulkadir1, R. S. R. Mohd Zaki2, A. T. Abd Wahab2, S. N. Miskan2, Anh-Tam Nguyen3, Dai-Viet N. Vo3, H. D. Setiabudi1,2
收稿日期:
2023-12-23
修回日期:
2024-02-21
出版日期:
2024-06-28
发布日期:
2024-08-05
通讯作者:
H.D. Setiabudi,E-mail:herma@umpsa.edu.my
基金资助:
B. A. Abdulkadir1, R. S. R. Mohd Zaki2, A. T. Abd Wahab2, S. N. Miskan2, Anh-Tam Nguyen3, Dai-Viet N. Vo3, H. D. Setiabudi1,2
Received:
2023-12-23
Revised:
2024-02-21
Online:
2024-06-28
Published:
2024-08-05
Contact:
H.D. Setiabudi,E-mail:herma@umpsa.edu.my
Supported by:
摘要: Investigating zeolites as hydrogen storage scaffolds is imperative due to their porous nature and favorable physicochemical properties. Nevertheless, the storage capacity of the unmodified zeolites has been rather unsatisfactory (0.224%-1.082% (mass)) compared to its modified counterpart. Thus, the contemporary focus on enhancing hydrogen storage capacities has led to significant attention towards the utilization of modified zeolites, with studies exploring surface modifications through physical and chemical treatments, as well as the integration of various active metals. The enhanced hydrogen storage properties of zeolites are attributed to the presence of aluminosilicates from alkaline and alkaline-earth metals, resulting in increased storage capacity through interactions with the charge density of these aluminosilicates. Therefore, there is a great demand to critically review their role such as well-defined topology, pore structure, good thermal stability, and tunable hydrophilicity in enhanced hydrogen storage. This article aimed to critically review the recent research findings based on modified zeolite performance for enhanced hydrogen storage. Some of the factors affecting the hydrogen storage capacities of zeolites that can affect the rate of reaction and the stability of the adsorbent, like pressure, structure, and morphology were studied, and examined. Then, future perspectives, recommendations, and directions for modified zeolites were discussed.
B. A. Abdulkadir, R. S. R. Mohd Zaki, A. T. Abd Wahab, S. N. Miskan, Anh-Tam Nguyen, Dai-Viet N. Vo, H. D. Setiabudi. A concise review on surface and structural modification of porous zeolite scaffold for enhanced hydrogen storage[J]. 中国化学工程学报, 2024, 70(6): 33-53.
B. A. Abdulkadir, R. S. R. Mohd Zaki, A. T. Abd Wahab, S. N. Miskan, Anh-Tam Nguyen, Dai-Viet N. Vo, H. D. Setiabudi. A concise review on surface and structural modification of porous zeolite scaffold for enhanced hydrogen storage[J]. Chinese Journal of Chemical Engineering, 2024, 70(6): 33-53.
[1] J.Z. Zang, H.B. Yu, G.F. Liu, M.H. Hong, J.W. Liu, T.H. Chen, Research progress on modifications of zeolite Y for improved catalytic properties, Inorganics 11 (1) (2023) 22. [2] Ratnakar RR, Nikunj G, Kun Z, Casimir D, James F, Birol D, Vemuri B. Hydrogen supply chain and challenges in large-scale LH2 storage and transportation. Int. J. Hydrogen Energy 46(2021)24149-24168. [3] B.C. Tashie-Lewis, S.G. Nnabuife, Hydrogen production, distribution, storage and power conversion in a hydrogen economy-A technology review, Chem. Eng. J. Adv. 8 (2021) 100172. [4] R. Hren, A. Vujanovic, Y. Van Fan, J.J. Klemes, D. Krajnc, L. Cucek, Hydrogen production, storage and transport for renewable energy and chemicals: An environmental footprint assessment, Renew. Sustain. Energy Rev. 173 (2023) 113113. [5] A.M. Abdalla, S. Hossain, O.B. Nisfindy, A.T. Azad, M. Dawood, A.K. Azad, Hydrogen production, storage, transportation and key challenges with applications: A review, Energy Convers. Manag. 165 (2018) 602-627. [6] L. Schlapbach, A. Zuttel, Hydrogen-storage materials for mobile applications, Nature 414 (2001) 353-358. [7] K.C. Tan, Y.S. Chua, T. He, P. Chen, Strategies of thermodynamic alternation on organic hydrogen carriers for hydrogen storage application: A review, Green Energy Resour. 1 (2) (2023) 100020. [8] C. Wells, R. Minunno, H.Y. Chong, G.M. Morrison, Strategies for the adoption of hydrogen-based energy storage systems: An exploratory study in Australia, Energies 15 (16) (2022) 6015. [9] D. Colognesi, L. Ulivi, M. Zoppi, A.J. Ramirez-Cuesta, A. Orecchini, A.J. Karkamkar, M. Fichtner, E. Gil Bardaji, Z. Zhao-Karger, Hydrogen-storage materials dispersed into nanoporous substrates studied through incoherent inelastic neutron scattering, J. Alloys Compd. 538 (2012) 91-99. [10] J. Weitkamp, Zeolites as media for hydrogen storage, Int. J. Hydrog. Energy 20 (12) (1995) 967-970. [11] A. Azzouz, Achievement in hydrogen storage on adsorbents with high surface-to-bulk ratio-Prospects for Si-containing matrices, Int. J. Hydrog. Energy 37 (6) (2012) 5032-5049. [12] V. Indira, K. Abhitha, A review on recent developments in Zeolite A synthesis for improved carbon dioxide capture: Implications for the water-energy nexus, Energy Nexus 7 (2022) 100095. [13] G. Yang, L.J. Zhou, X.C. Liu, X.W. Han, X.H. Bao, Adsorption, reduction and storage of hydrogen within ZSM-5 zeolite exchanged with various ions: A comparative theoretical study, Microporous Mesoporous Mater. 161 (2012) 168-178. [14] Z. Ozturk, Hydrogen storage on lithium modified silica based CHAbazite type zeolite, A computational study, Int. J. Hydrog. Energy 43 (49) (2018) 22365-22376. [15] N.M. Musyoka, J.W. Ren, H.W. Langmi, B.C. North, M. Mathe, A comparison of hydrogen storage capacity of commercial and fly ash-derived zeolite X together with their respective templated carbon derivatives, Int. J. Hydrog. Energy 40 (37) (2015) 12705-12712. [16] Kim S, Song H, Kim C. Nanoconfinement effects of MCM-41 on the thermal decomposition of metal borohydrides. An. Sci.& Techl. 31(2018) 1-6. [17] Y.J. Wang, Application of different porous materials for hydrogen storage, J. Phys.: Conf. Ser. 2403 (1) (2022) 012012. [18] L.X. Ge, M.H. Qiu, Y.F. Zhu, S. Yang, W.Q. Li, W.T. Li, Z. Jiang, X.Q. Chen, Synergistic catalysis of Ru single-atoms and zeolite boosts high-efficiency hydrogen storage, Appl. Catal. B Environ. 319 (2022) 121958. [19] Y.H. Wang, K.D. Yin, S.S. Fan, X.M. Lang, C. Yu, S.L. Wang, S. Li, The molecular insight into the “Zeolite-ice” as hydrogen storage material, Energy 217 (2021) 119406. [20] B. Mondal, A. Kundu, B. Chakraborty, High-capacity hydrogen storage in zirconium decorated zeolite templated carbon: Predictions from DFT simulations, Int. J. Hydrog. Energy 47 (91) (2022) 38671-38681. [21] C.U. Deniz, Computational screening of zeolite templated carbons for hydrogen storage, Comput. Mater. Sci. 202 (2022) 110950. [22] M. Sunil Kumar, M.S. Alphin, P. Senthil Kumar, S. Raja, A review on zeolite catalyst for deNOx performance in ammonia-selective catalytic reduction, Fuel 334 (2023) 126828. [23] B.J. Wang, Y. Zhang, X.L. Fan, Deactivation of Cu SCR catalysts based on small-pore SSZ-13 zeolites: A review, Chem. Phys. Impact 6 (2023) 100207. [24] P.X. Yan, H.Y. Wang, Y.H. Liao, C.G. Wang, Zeolite catalysts for the valorization of biomass into platform compounds and biochemicals/biofuels: A review, Renew. Sustain. Energy Rev. 178 (2023) 113219. [25] U.Y. Qazi, R. Javaid, A. Ikhlaq, A.H. Khoja, F. Saleem, A comprehensive review on zeolite chemistry for catalytic conversion of biomass/waste into green fuels, Molecules 27 (23) (2022) 8578. [26] H.U. Hambali, A.A. Jalil, A.A. Abdulrasheed, T.J. Siang, Y. Gambo, A.A. Umar, Zeolite and clay based catalysts for CO2 reforming of methane to syngas: A review, Int. J. Hydrog. Energy 47 (72) (2022) 30759-30787. [27] H.Y. Chen, J. Lu, J.M. Fedeyko, A. Raj, Zeolite supported Pd catalysts for the complete oxidation of methane: A critical review, Appl. Catal. A Gen. 633 (2022) 118534. [28] N.J. Azhari, N. Nurdini, S. Mardiana, T. Ilmi, A.T.N. Fajar, I.G.B.N. Makertihartha, Subagjo, G.T.M. Kadja, Zeolite-based catalyst for direct conversion of CO2 to C2+ hydrocarbon: A review, J. CO2 Util. 59 (2022) 101969. [29] N. Chaihad, S. Karnjanakom, A. Abudula, G.Q. Guan, Zeolite-based cracking catalysts for bio-oil upgrading: A critical review, Resour. Chem. Mater. 1 (2) (2022) 167-183. [30] U. Menon, M. Rahman, S.J. Khatib, A critical literature review of the advances in methane dehydroaromatization over multifunctional metal-promoted zeolite catalysts, Appl. Catal. A Gen. 608 (2020) 117870. [31] E. Kianfar, S. Hajimirzaee, S. Mousavian, A.S. Mehr, Zeolite-based catalysts for methanol to gasoline process: A review, Microchem. J. 156 (2020) 104822. [32] Y. Yang, R. Xu, C. Zheng, Y. Long, S. Tang, Z. Sun, B. Huang, J.P. Chen, Hierarchical hollow zeolite fiber in catalytic applications: A critical review, Chemosphere 307 (Pt 3) (2022) 135899. [33] H.M. Aly, M.E. Moustafa, E.A. Abdelrahman, Synthesis of mordenite zeolite in absence of organic template, Adv. Powder Technol. 23 (6) (2012) 757-760. [34] A. Maghfirah, M.M. Ilmi, A.T.N. Fajar, G.T.M. Kadja, A review on the green synthesis of hierarchically porous zeolite, Mater. Today Chem. 17 (2020) 100348. [35] S. Narayanan, P. Tamizhdurai, V.L. Mangesh, C. Ragupathi, P. Santhana krishnan, A. Ramesh, Recent advances in the synthesis and applications of mordenite zeolite-review, RSC Adv. 11 (1) (2021) 250-267. [36] J.N. Bae, M. Dusselier, Synthesis strategies to control the Al distribution in zeolites: Thermodynamic and kinetic aspects, Chem. Commun. 59 (7) (2023) 852-867. [37] M. Krishnamurthy, M. Swaminathan, Synthesis of hierarchical micro-mesoporous ZSM-5 zeolite and its catalytic activity in benzylation of mesitylene, Silicon 15 (8) (2023) 3399-3405. [38] R.S. Bai, Y. Song, Y. Li, J.H. Yu, Creating hierarchical pores in zeolite catalysts, Trends Chem. 1 (6) (2019) 601-611. [39] M. Sai Bhargava Reddy, D. Ponnamma, K.K. Sadasivuni, B. Kumar, A.M. Abdullah, Carbon dioxide adsorption based on porous materials, RSC Adv. 11 (21) (2021) 12658-12681. [40] X.X. Ren, C.M. Zhang, L.F. Kou, R.X. Wang, Y.Q. Wang, R. Li, Hierarchical porous polystyrene-based activated carbon spheres for CO2 capture, Environ. Sci. Pollut. Res. 29 (9) (2022) 13098-13113. [41] R. Saab, C.M. Damaskinos, K. Polychronopoulou, A.M. Efstathiou, N. Charisiou, M. Goula, S.J. Hinder, M.A. Baker, A. Schiffer, Ni/CNT/Zeolite-Y composite catalyst for efficient heptane hydrocracking: Steady-state and transient kinetic studies, Appl. Catal. A Gen. 630 (2022) 118437. [42] Y.W. Sun, L.H. Wei, Z. Zhang, H.X. Zhang, Y.L. Li, Coke Formation over zeolite catalysts in light alkanes aromatization and anti-carbon-deposition strategies and perspectives: A review, Energy Fuels 37 (3) (2023) 1657-1677. [43] S.M. Al-Jubouri, N.A. Curry, S.M. Holmes, Hierarchical porous structured zeolite composite for removal of ionic contaminants from waste streams and effective encapsulation of hazardous waste, J. Hazard. Mater. 320 (2016) 241-251. [44] K.P. Cao, D. Fan, M.B. Gao, B.H. Fan, N. Chen, L.Y. Wang, P. Tian, Z.M. Liu, Recognizing the important role of surface barriers in MOR zeolite catalyzed DME carbonylation reaction, ACS Catal. 12 (1) (2022) 1-7. [45] G.A. Nasser, A.A. Al-Qadri, A.K. Jamil, I.A. Bakare, M.A. Sanhoob, O. Muraza, Z.H. Yamani, T. Yokoi, Q. Saleem, D. Alsewdan, Conversion of methanol to olefins over modified OSDA-free CHA zeolite catalyst, Ind. Eng. Chem. Res. 60 (33) (2021) 12189-12199. [46] T.T. Xu, G.G. Li, K.H. Zheng, X.Y. Zhang, X. Zhang, S.Q. Zhang, Effective reduction of nitric oxide over a core-shell Cu-SAPO-34@Fe-MOR zeolite catalyst, RSC Adv. 13 (1) (2023) 638-651. [47] A.A. Dabbawala, I. Ismail, B.V. Vaithilingam, K. Polychronopoulou, G. Singaravel, S. Morin, M. Berthod, Y. Al Wahedi, Synthesis of hierarchical porous Zeolite-Y for enhanced CO2 capture, Microporous Mesoporous Mater. 303 (2020) 110261. [48] J. Zhang, Y. Tan, W.J. Song, Zeolitic imidazolate frameworks for use in electrochemical and optical chemical sensing and biosensing: A review, Mikrochim. Acta 187 (4) (2020) 234. [49] C. Pagis, A.R. Morgado Prates, D. Farrusseng, N. Bats, A. Tuel, Hollow zeolite structures: An overview of synthesis methods, Chem. Mater. 28 (15) (2016) 5205-5223. [50] M. Xu, S.J. Chen, D.K. Seo, S.G. Deng, Evaluation and optimization of VPSA processes with nanostructured zeolite NaX for post-combustion CO2 capture, Chem. Eng. J. 371 (2019) 693-705. [51] H.B. Chen, Y.Q. Wang, C. Sun, X. Wang, C. Wang, Synthesis of hierarchical ZSM-5 zeolites with CTAB-containing seed silicalite-1 and its catalytic performance in methanol to propylene, Catal. Commun. 112 (2018) 10-14. [52] D.B. Li, Y.M. Chen, J.P. Hu, B.Q. Deng, X.W. Cheng, Y. Zhang, Synthesis of hierarchical chabazite zeolite via interzeolite transformation of coke-containing spent MFI, Appl. Catal. B Environ. 270 (2020) 118881. [53] M.Z. Kim, P. Sharma, Y. Kim, S.F. Alam, H.R. Lee, C.H. Cho, One-step template-free hydrothermal synthesis of partially Sr-incorporated hierarchical K-CHA zeolite microspheres, Microporous Mesoporous Mater. 286 (2019) 65-76. [54] B.R.S. De Araujo, J.A. Onrubia-Calvo, I. Stambouli, G. Petaud, J. Hidalgo-Carrillo, A. Nieto-Marquez, B. Pereda-Ayo, J.R. Gonzalez-Velasco, A. Caravaca, S. Gil, Towards the development of advanced hierarchical chabazite materials: Novel micro-mesoporous silicoaluminophosphate SAPO-34 zeolites, Mater. Today Commun. 31 (2022) 103580. [55] P.A. Alaba, Y.M. Sani, I.Y. Mohammed, Y.A. Abakr, W.M.A.W. Daud, Synthesis and characterization of sulfated hierarchical nanoporous faujasite zeolite for efficient transesterification of shea butter, J. Clean. Prod. 142 (2017) 1987-1993. [56] A. Al-Ani, R.J. Darton, S. Sneddon, V. Zholobenko, Nanostructured zeolites: The introduction of intracrystalline mesoporosity in basic faujasite-type catalysts, ACS Appl. Nano Mater. 1 (1) (2018) 310-318. [57] D. Verboekend, T.C. Keller, M. Milina, R. Hauert, J. Perez-Ramirez, Hierarchy brings function: Mesoporous clinoptilolite and L zeolite catalysts synthesized by tandem acid-base treatments, Chem. Mater. 25 (9) (2013) 1947-1959. [58] J. Kenvin, S. Mitchell, M. Sterling, R. Warringham, T.C. Keller, P. Crivelli, J. Jagiello, J. Perez-Ramirez, Quantifying the complex pore architecture of hierarchical faujasite zeolites and the impact on diffusion, Adv. Funct. Mater. 26 (31) (2016) 5621-5630. [59] S. Fernandez, M.L. Ostraat, J.A. Lawrence III, K. Zhang, Tailoring the hierarchical architecture of beta zeolites using base leaching and pore-directing agents, Microporous Mesoporous Mater. 263 (2018) 201-209. [60] J. Aguado, D.P. Serrano, J.M. Rodriguez, Zeolite Beta with hierarchical porosity prepared from organofunctionalized seeds, Microporous Mesoporous Mater. 115 (3) (2008) 504-513. [61] Y.J. Jin, C.C. Xiao, J.H. Liu, S.D. Zhang, S. Asaoka, S.L. Zhao, Mesopore modification of beta zeolites by sequential alkali and acid treatments: Narrowing mesopore size distribution featuring unimodality and mesoporous texture properties estimated upon a mesoporous volumetric model, Microporous Mesoporous Mater. 218 (2015) 180-191. [62] K.H. Chung, High-pressure hydrogen storage on microporous zeolites with varying pore properties, Energy 35 (5) (2010) 2235-2241. [63] L.Y. Molefe, N.M. Musyoka, J.W. Ren, H.W. Langmi, M. Mathe, P.G. Ndungu, Polymer-based shaping strategy for zeolite templated carbons (ZTC) and their metal organic framework (MOF) composites for improved hydrogen storage properties, Front. Chem. 7 (2019) 864. [64] Z.X. Yang, Y.D. Xia, R. Mokaya, Enhanced hydrogen storage capacity of high surface area zeolite-like carbon materials, J. Am. Chem. Soc. 129 (6) (2007) 1673-1679. [65] L. Regli, A. Zecchina, J.G. Vitillo, D. Cocina, G. Spoto, C. Lamberti, K.P. Lillerud, U. Olsbye, S. Bordiga, Hydrogen storage in Chabazite zeolite frameworks, Phys. Chem. Chem. Phys. 7 (17) (2005) 3197. [66] H. Wu, W. Zhou, T. Yildirim, Hydrogen storage in a prototypical zeolitic imidazolate framework-8, J Am Chem Soc 129 (17) (2007) 5314-5315. [67] B. Erdogan Alver, M.Sakizci, Hydrogen (H2) adsorption on natural and cation-exchanged clinoptilolite, mordenite and chabazite, Int. J. Hydrog. Energy 44 (13) (2019) 6748-6755. [68] J. Dong, X. Wang, H. Xu, Q. Zhao, J. Li, Hydrogen storage in several microporous zeolites, Int. J. Hydrog. Energy 32 (18) (2007) 4998-5004. [69] Y.D. Xia, R. Mokaya, D.M. Grant, G.S. Walker, A simplified synthesis of N-doped zeolite-templated carbons, the control of the level of zeolite-like ordering and its effect on hydrogen storage properties, Carbon 49 (3) (2011) 844-853. [70] N. Ismail, H. Tantawy, Microwave synthesis of Nano/Micronized zeolites from natural source: Evaluation of energy storage capacities, Egypt. J. Chem. (2020). [71] D.K. Panchariya, R.K. Rai, E. Anil Kumar, S.K. Singh, Core-shell zeolitic imidazolate frameworks for enhanced hydrogen storage, ACS Omega 3 (1) (2018) 167-175. [72] Z.J. Chen, K.O. Kirlikovali, K.B. Idrees, M.C. Wasson, O.K. Farha, Porous materials for hydrogen storage, Chem 8 (3) (2022) 693-716. [73] Isidro-Ortega FJ, Pacheco-Sanchez JH, Gonzalez-Ruiz A, Alejo R. DFT study of hydrogen storage on the metallic decoration of boron substitution on zeolite templated carbon vacancy. Int. J. Hydrogen Energy 45(2020)19505-19515. [74] H.W. Langmi, A. Walton, M.M. Al-Mamouri, S.R. Johnson, D. Book, J.D. Speight, P.P. Edwards, I. Gameson, P.A. Anderson, I.R. Harris, Hydrogen adsorption in zeolites A, X, Y and RHO, J. Alloys Compd. 356-357 (2003) 710-715. [75] S. Kumar, R. Bera, N. Das, J. Koh, Chitosan-based zeolite-Y and ZSM-5 porous biocomposites for H2 and CO2 storage, Carbohydr. Polym. 232 (2020) 115808. [76] A. Streb, M. Mazzotti, Adsorption for efficient low carbon hydrogen production: Part 1-adsorption equilibrium and breakthrough studies for H2/CO2/CH4 on zeolite 13X, Adsorption 27 (4) (2021) 541-558. [77] S. Karki, S.N. Chakraborty, Hydrogen adsorption in Si-LTA and LTA-4A zeolites: A Gibbs Ensemble Monte Carlo simulation study, Mater. Chem. Phys. 313 (2024) 128722. [78] Y.W. Li, R.T. Yang, Hydrogen storage in low silica type X zeolites, J. Phys. Chem. B 110 (34) (2006) 17175-17181. [79] S.Y. Lee, S.J. Park, Synthesis of zeolite-casted microporous carbons and their hydrogen storage capacity, J. Colloid Interface Sci. 384 (1) (2012) 116-120. [80] P. Roy, N. Das, Ultrasonic assisted synthesis of Bikitaite zeolite: A potential material for hydrogen storage application, Ultrason. Sonochem. 36 (2017) 466-473. [81] M. Fujiwara, Y. Fujio, H. Sakurai, H. Senoh, T. Kiyobayashi, Storage of molecular hydrogen into ZSM-5 zeolite in the ambient atmosphere by the sealing of the micropore outlet, Chem. Eng. Process. Process. Intensif. 79 (2014) 1-6. [82] E. Masika, R. Mokaya, Preparation of ultrahigh surface area porous carbons templated using zeolite 13X for enhanced hydrogen storage, Prog. Nat. Sci. Mater. Int. 23 (3) (2013) 308-316. [83] J.M. Liang, R.G. Zhang, Q. Zhao, J.X. Dong, B.J. Wang, J.P. Li, Molecular simulation of hydrogen storage in ion-exchanged Mazzite and Levyne zeolites, Comput. Theor. Chem. 980 (2012) 1-6. [84] M. Kapsi, C.M. Veziri, G. Pilatos, G.N. Karanikolos, G.E. Romanos, Zeolite-templated sub-nanometer carbon nanotube arrays and membranes for hydrogen storage and separation, Int. J. Hydrog. Energy 47 (87) (2022) 36850-36872. [85] A. Kundu, R. Trivedi, N. Garg, B. Chakraborty, Novel permeable material “yttrium decorated zeolite templated carbon” for hydrogen storage: Perspectives from density functional theory, Int. J. Hydrog. Energy 47 (66) (2022) 28573-28584. [86] H. Nishihara, F. Ohtake, A. Castro-Muniz, H. Itoi, M. Ito, Y. Hayasaka, J. Maruyama, J.N. Kondo, R. Osuga, T. Kyotani, Enhanced hydrogen chemisorption and spillover on non-metallic nickel subnanoclusters, J. Mater. Chem. A 6 (26) (2018) 12523-12531. [87] D.K. Panchariya, E.A. Kumar, S.K. Singh, Lithium-doped silica-rich MIL-101(Cr) for enhanced hydrogen uptake, Biotechnol. Lett. 14 (20) (2019) 3728-3735. [88] B. Li, Y.F. Liu, J. Gu, M.X. Gao, H.G. Pan, Synergetic effects of in situ formed CaH2 and LiBH4 on hydrogen storage properties of the Li-Mg-N-H system, Chem. Asian J. 8 (2) (2013) 374-384. [89] Y.J. Yang, Y.F. Liu, Y. Li, M.X. Gao, H.G. Pan, Synthesis and thermal decomposition behaviors of magnesium borohydride ammoniates with controllable composition as hydrogen storage materials, Chem. Asian J. 8 (2) (2013) 476-481. [90] Q.M. Sun, N. Wang, J.H. Yu, Advances in catalytic applications of zeolite-supported metal catalysts, Adv. Mater. 33 (51) (2021) e2104442. [91] A. Feliczak-Guzik, Hierarchical zeolites: Synthesis and catalytic properties, Microporous Mesoporous Mater. 259 (2018) 33-45. [92] M. Shamzhy, M. Opanasenko, P. Concepcion, A. Martinez, New trends in tailoring active sites in zeolite-based catalysts, Chem. Soc. Rev. 48 (4) (2019) 1095-1149. [93] P. Sanchez-Lopez, Y. Kotolevich, R.I. Yocupicio-Gaxiola, J. Antunez-Garcia, R.K. Chowdari, V. Petranovskii, S. Fuentes-Moyado, Recent advances in catalysis based on transition metals supported on zeolites, Front. Chem. 9 (2021) 716745. [94] Y.C. Chai, W.X. Shang, W.J. Li, G.J. Wu, W.L. Dai, N.J. Guan, L.D. Li, Noble metal particles confined in zeolites: Synthesis, characterization, and applications, Adv. Sci. 6 (16) (2019) 1900299. [95] J. Miao, Z.L. Lang, T.Y. Xue, Y. Li, Y.W. Li, J.J. Cheng, H. Zhang, Z.K. Tang, Revival of zeolite-templated nanocarbon materials: Recent advances in energy storage and conversion, Adv. Sci. 7 (20) (2020) 1335. [96] W. Su, Y.F. Zhu, J.G. Zhang, Y.N. Liu, Y. Yang, Q.F. Mao, L.Q. Li, Effect of multi-wall carbon nanotubes supported nano-nickel and TiF3 addition on hydrogen storage properties of magnesium hydride, J. Alloys Compd. 669 (2016) 8-18. [97] J. Kleperis, P. Lesnicenoks, L. Grinberga, G. Chikvaidze, J. Klavins, Zeolite as material for hydrogen storage in transport applications/ceolita ka udenraza uzglabasanas vides izpete, Latv. J. Phys. Tech. Sci. 50 (3) (2013) 59-64. [98] L. Zang, Q.Y. Zhang, L. Li, Y.K. Huang, X.Y. Chang, L.F. Jiao, H.T. Yuan, Y.J. Wang, Improved dehydrogenation properties of LiBH4 using catalytic nickel- and cobalt-based mesoporous oxide nanorods, Chem. 13 (1) (2018) 99-105. [99] P. Lesnicenoks, A. Sivars, L. Grinberga, J. Kleperis, Hydrogen adsorption in zeolite studied with sievert and thermogravimetric methods, IOP Conf. Ser.: Mater. Sci. Eng. 38 (2012) 012060. [100] M.D. Gao, L.Y. Yang, S.J. Yang, T. Jiang, F. Wu, T. Nagasaka, Simple aminated modified zeolite 4A synthesized using fly ash and its remediation of mercury contamination: Characteristics and mechanism, Sustainability 14 (23) (2022) 15924. [101] L.J. Zhu, X.F. Lv, S.Y. Tong, T.T. Zhang, Y.R. Song, Y.J. Wang, Z. Hao, C. Huang, D.H. Xia, Modification of zeolite by metal and adsorption desulfurization of organic sulfide in natural gas, J. Nat. Gas Sci. Eng. 69 (2019) 102941. [102] C. Flores, N. Batalha, N.R. Marcilio, V.V. Ordomsky, A.Y. Khodakov, Influence of impregnation and ion exchange sequence on metal localization, acidity and catalytic performance of cobalt BEA zeolite catalysts in fischer-tropsch synthesis, ChemCatChem 11 (1) (2019) 568-574. [103] D.W. Astuti, Mudasir, N.H. Aprilita, Preparation and characterization adsorbent based on zeolite from Klaten, Central Java, Indonesia, J. Phys.: Conf. Ser. 1156 (2019) 012002. [104] Q.M. Sun, B.W.J. Chen, N. Wang, Q. He, A. Chang, C.M. Yang, H. Asakura, T. Tanaka, M.J. Hulsey, C.H. Wang, J.H. Yu, N. Yan, Zeolite-encaged Pd-Mn nanocatalysts for CO2 hydrogenation and formic acid dehydrogenation, Angew. Chem. Int. Ed. 59 (45) (2020) 20183-20191. [105] G. Grzybek, K. Gora-Marek, K. Tarach, K. Pyra, P. Patulski, M. Greluk, G. Slowik, M. Rotko, A. Kotarba, Tuning the properties of the cobalt-zeolite nanocomposite catalyst by potassium: Switching between dehydration and dehydrogenation of ethanol, J. Catal. 407 (2022) 364-380. [106] N. Kosinov, C. Liu, E.J.M. Hensen, E.A. Pidko, Engineering of transition metal catalysts confined in zeolites, Chem. Mater. 30 (10) (2018) 3177-3198. [107] S.F. Li, H. Yan, Y.B. Liu, X.B. Chen, X. Zhou, X. Feng, C.H. Yang, Rational screening of transition metal single-atom-doped ZSM-5 zeolite catalyst for naphtha cracking from microkinetic analysis, Chem. Eng. J. 445 (2022) 136670. [108] F.J. Isidro-Ortega, J.H. Pacheco-Sanchez, L.A. Desales-Guzman, Hydrogen storage on lithium decorated zeolite templated carbon, DFT study, Int. J. Hydrog. Energy 42 (52) (2017) 30704-30717. [109] H. Zhou, J. Zhang, D. Ji, A.H. Yuan, X.P. Shen, Effect of catalyst loading on hydrogen storage capacity of ZIF-8/graphene oxide doped with Pt or Pd via spillover, Microporous Mesoporous Mater. 229 (2016) 68-75. [110] S. Youk. Molecular design of heteroatom-doped nanoporous carbons with controlled porosity and surface polarity for gas physisorption and energy storage. Chem. Eng. J. 22(2021)13421. [111] E. Kianfar Zeolites: Properties, Applications, Modification, and Selectivity. In book: Zeolites: Advances in Research and Applications. Nova Science Publishers, Inc., NY, USA, 2020. [112] D.G. Boer, J. Langerak, P.P. Pescarmona, Zeolites as selective adsorbents for CO2 separation, ACS Appl. Energy Mater. 6 (5) (2023) 2634-2656. [113] D.T. Bregante, J.Z. Tan, A. Sutrisno, D.W. Flaherty, Heteroatom substituted zeolite FAU with ultralow Al contents for liquid-phase oxidation catalysis, Catal. Sci. Technol. 10 (3) (2020) 635-647. [114] Q.L. Ke, T.J. Sun, X.L. Wei, Y. Guo, S.D. Wang, Enhanced trace carbon dioxide capture on heteroatom-substituted RHO zeolites under humid conditions, ChemSusChem 10 (21) (2017) 4207-4214. [115] T.T. Pang, X.Y. Yang, C.Y. Yuan, A.A. Elzatahry, A. Alghamdi, X. He, X.W. Cheng, Y.H. Deng, Recent advance in synthesis and application of heteroatom zeolites, Chin. Chemical Lett. 32 (1) (2021) 328-338. [116] A.J. Mallette, S. Hong, E.E. Freeman, S.A. Saslow, S. Mergelsberg, R.K. Motkuri, J.J. Neeway, G. Mpourmpakis, J.D. Rimer, Heteroatom manipulation of zeolite crystallization: Stabilizing Zn-FAU against interzeolite transformation, JACS Au 2 (10) (2022) 2295-2306. [117] H.W. Zhang, I. bin Samsudin, S. Jaenicke, G.K. Chuah, Zeolites in catalysis: Sustainable synthesis and its impact on properties and applications, Catal. Sci. Technol. 12 (19) (2022) 6024-6039. [118] W.T. Cao, Y.F. Huang, D. Li, W.H. Chen, Z.P. Qie, X.X. Pi, Q.J. Du, X.Y. Lai, Y.H. Li, N/S Co-doped microporous zeolite-templated carbon for efficient CO2 adsorption and separation, J. Energy Inst. 106 (2023) 101159. [119] W. Choi, R.K. Bera, S.W. Han, H. Park, T.W. Go, M. Choi, R. Ryoo, J.Y. Park, Doping effect of zeolite-templated carbon on electrical conductance and supercapacitance properties, Carbon 193 (2022) 42-50. [120] Han, Lv, Sun, Song, First-principles study on hydrogen storage performance of transition metal-doped zeolite template carbon, Crystals 9 (8) (2019) 397. [121] F.O. Erdogan, C. Celik, A.C. Turkmen, A.E. Sadak, E.Cucu, Hydrogen storage behavior of zeolite/graphene, zeolite/multiwalled carbon nanotube and zeolite/green plum stones-based activated carbon composites, J. Energy Storage 72 (2023) 108471. [122] T. Hai, F.A. Alenizi, A.H. Mohammed, B.S. Chauhan, B. Al-Qargholi, A.S.M. Metwally, M. Ullah, Machine learning-aided modeling of the hydrogen storage in zeolite-based porous media, Int. Commun. Heat Mass Transf. 145 (2023) 106848. [123] T. Silvester, W. Aan, M. Lenny, S. Muhammad, H. Latifa, F.M. Wiyanti, K.A. Amalia, S.K. Deni, A. Muhammad. Modification of natural zeolite from Bogor for hydrogen storage. Rasayan J. Chem. 16(2024)2345-2352. [124] A. Policicchio, G. Conte, S. Stelitano, C.P. Bonaventura, A.M. Putz, C. Ianasi, L. Almasy, Z.E. Horvath, R.G. Agostino, Hydrogen storage performances for mesoporous silica synthesized with mixed tetraethoxysilane and methyltriethoxysilane precursors in acidic condition, Colloids Surf. A Physicochem. Eng. Aspects 601 (2020) 125040. [125] A.G. Gebretatios, F. Banat, T. Witoon, C.K. Cheng, Synthesis of sustainable rice husk ash-derived nickel-decorated MCM-41 and SBA-15 mesoporous silica materials for hydrogen storage, Int. J. Hydrog. Energy 51 (2024) 255-266. [126] R.C. Muduli, N. Gupta, P. Sharma, P. Kale, Investigating reversible hydrogen storage and performance of porous Si by kinetic study and pressure composition isotherms at up to 20bar, Int. J. Hydrog. Energy 59 (2024) 447-456. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||