[1] E. Iglesia, S.L. Soled, J.E. Baumgartner, S.C. Reyes, Synthesis and catalytic properties of eggshell cobalt catalysts for the Fischer-Tropsch synthesis, Top. Catal. 2 (1) (1995) 17-27. [2] R.S. Dixit, L.L. Tavlarides, Integral method of analysis of fischer-tropsch synthesis reactions in a catalyst pellet, Chem. Eng. Sci. 37 (4) (1982) 539-544. [3] W.H. Zimmerman, J.A. Rossin, D.B. Bukur, Effect of particle size on the activity of a fused iron Fischer-Tropsch catalyst, Ind. Eng. Chem. Res. 28 (4) (1989) 406-413. [4] B.L. Xu, Y.N. Fan, Y. Zhang, N. Tsubaki, Pore diffusion simulation model of bimodal catalyst for Fischer-Tropsch synthesis, AlChE. J. 51 (7) (2005) 2068-2076. [5] B.B. Hallac, K. Keyvanloo, J.D. Hedengren, W.C. Hecker, M.D. Argyle, An optimized simulation model for iron-based Fischer-Tropsch catalyst design: transfer limitations as functions of operating and design conditions, Chem. Eng. J. 263 (2015) 268-279. [6] M. Mandic, B. Todic, L. Zivanic, N. Nikacevic, D.B. Bukur, Effects of catalyst activity, particle size and shape, and process conditions on catalyst effectiveness and methane selectivity for fischer-tropsch reaction: a modeling study, Ind. Eng. Chem. Res. 56 (10) (2017) 2733-2745. [7] E. Iglesia, Design, synthesis, and use of cobalt-based Fischer-Tropsch synthesis catalysts, Appl. Catal. A Gen. 161 (1-2) (1997) 59-78. [8] D. Vervloet, F. Kapteijn, J. Nijenhuis, J.R. van Ommen, Fischer-Tropsch reaction-diffusion in a cobalt catalyst particle: aspects of activity and selectivity for a variable chain growth probability, Catal. Sci. Technol. 2 (6) (2012) 1221-1233. [9] I.C. Yates, C.N. Satterfield, Intrinsic kinetics of the Fischer-Tropsch synthesis on a cobalt catalyst, Energy Fuels 5 (1) (1991) 168-173. [10] R. M. de Deugd. Fischer-Tropsch synthesis revisited; efficiency and selectivity benefits from imposing temporal and/or spatial structure in the reactor. Doc. thesis. Delft University of Technology, Delft, 2004. [11] Y.N. Wang, Y.Y. Xu, H.W. Xiang, Y.W. Li, B.J. Zhang, Modeling of catalyst pellets for fischer-tropsch synthesis, Ind. Eng. Chem. Res. 40 (20) (2001) 4324-4335. [12] Y.N. Wang, W.P. Ma, Y.J. Lu, J. Yang, Y.Y. Xu, H.W. Xiang, Y.W. Li, Y.L. Zhao, B.J. Zhang, Kinetics modelling of Fischer-Tropsch synthesis over an industrial Fe-Cu-K catalyst, Fuel 82 (2) (2003) 195-213. [13] A. Nanduri, P.L. Mills, Effect of catalyst shape and multicomponent diffusion flux models on intraparticle transport-kinetic interactions in the gas-phase Fischer-Tropsch synthesis, Fuel 278 (2020) 118117. [14] B. E. Poling, J. M. Prausnitz, J. P. O'connell, The properties of gases and liquids. 5th ed.,Mcgraw-Hill, New York, 2001. [15] J. Solsvik, H.A. Jakobsen, Modeling of multicomponent mass diffusion in porous spherical pellets: application to steam methane reforming and methanol synthesis, Chem. Eng. Sci. 66 (9) (2011) 1986-2000. [16] R. Krishna, J. A. Wesselingh, The Maxwell-Stefan approach to mass transfer, Chem. Eng. Sci. 52 (6) (1997) 861-911. [17] J.W. Veldsink, R.M.J. van Damme, G.F. Versteeg, W.P.M. van Swaaij, The use of the dusty-gas model for the description of mass transport with chemical reaction in porous media, Chem. Eng. J. Biochem. Eng. J. 57 (2) (1995) 115-125. [18] E.S. Lox, G.F. Froment, Kinetics of the Fischer-Tropsch reaction on a precipitated promoted iron catalyst. 2. Kinetic modeling, Ind. Eng. Chem. Res. 32 (1) (1993) 71-82. [19] E. S. Lox, G. F. Froment. Kinetics of the Fischer-Tropsch reaction on a precipitated promoted iron catalyst.1. experimental procedure and results. Ind. Eng. Chem. Res. 32 (1) (1993) 61-70. [20] G.P. van der Laan, A.A.C.M. Beenackers, Hydrocarbon selectivity model for the gas-solid fischer-tropsch synthesis on precipitated iron catalysts, Ind. Eng. Chem. Res. 38 (4) (1999) 1277-1290. [21] J. Yang, Y. Liu, J. Chang, Y.N. Wang, L. Bai, Y.Y. Xu, H.W. Xiang, Y.W. Li, B. Zhong, Detailed kinetics of fischer-tropsch synthesis on an industrial Fe-Mn catalyst, Ind. Eng. Chem. Res. 42 (21) (2003) 5066-5090. [22] B.T. Teng, J. Chang, C.H. Zhang, D.B. Cao, J. Yang, Y. Liu, X.H. Guo, H.W. Xiang, Y.W. Li, A comprehensive kinetics model of Fischer-Tropsch synthesis over an industrial Fe-Mn catalyst, Appl. Catal. A Gen. 301 (1) (2006) 39-50. [23] F.G. Botes, Proposal of a new product characterization model for the iron-based low-temperature fischer-tropsch synthesis, Energy Fuels 21 (3) (2007) 1379-1389. [24] B. Todic, W.P. Ma, G. Jacobs, B.H. Davis, D.B. Bukur, CO-insertion mechanism based kinetic model of the Fischer-Tropsch synthesis reaction over re-promoted Co catalyst, Catal. Today 228 (2014) 32-39. [25] B. Todic, T. Bhatelia, G.F. Froment, W.P. Ma, G. Jacobs, B.H. Davis, D.B. Bukur, Kinetic model of fischer-tropsch synthesis in a slurry reactor on co-Re/Al2O3 catalyst, Ind. Eng. Chem. Res. 52 (2) (2013) 669-679. [26] B. Todic, W.P. Ma, G. Jacobs, B.H. Davis, D.B. Bukur, Effect of process conditions on the product distribution of Fischer-Tropsch synthesis over a re-promoted cobalt-alumina catalyst using a stirred tank slurry reactor, J. Catal. 311 (2014) 325-338. [27] K. Zheng, R.Y. Yang, H.S. Wu, G. Wang, Y. Yang, Y.W. Li, Application of the perturbed-chain SAFT to phase equilibria in the fischer-tropsch synthesis, Ind. Eng. Chem. Res. 58 (19) (2019) 8387-8400. [28] K. Zheng, H.S. Wu, C.Y. Geng, G. Wang, Y. Yang, Y.W. Li, A comparative study of the perturbed-chain statistical associating fluid theory equation of state and activity coefficient models in phase equilibria calculations for mixtures containing associating and polar components, Ind. Eng. Chem. Res. 57 (8) (2018) 3014-3030. [29] H.S. Wu, K. Zheng, G. Wang, Y. Yang, Y.W. Li, Modeling of gas solubility in hydrocarbons using the perturbed-chain statistical associating fluid theory equation of state, Ind. Eng. Chem. Res. 58 (27) (2019) 12347-12360. [30] C. Erkey, J.B. Rodden, A. Akgerman, A correlation for predicting diffusion coefficients in alkanes, Can. J. Chem. Eng. 68 (4) (1990) 661-665. [31] C. Erkey, J.B. Rodden, A. Akgerman, Diffusivities of synthesis gas and n-alkanes in Fischer-Tropsch wax, Energy Fuels 4 (3) (1990) 275-276. [32] J.J. Marano, G.D. Holder, Prediction of bulk properties of fischer-tropsch derived liquids, Ind. Eng. Chem. Res. 36 (6) (1997) 2409-2420. [33] F. Fischer, H. Tropsch. Erdolsynthese bei gewohnlichem druck aus den vergasungsprodukten der kohle. Brennstoff. Chem. 7 (1926) 97. [34] R.C. Brady III, R. Pettit, Mechanism of the Fischer-Tropsch reaction. The chain propagation step, J. Am. Chem. Soc. 103 (5) (1981) 1287-1289. [35] H. Pichler, H. Schulz, Neuere erkenntnisse auf Dem gebiet der synthese von kohlenwasserstoffen aus CO und H2, Chem. Ing. Tech. 42 (18) (1970) 1162-1174. [36] R.B. Anderson, R.A. Friedel, H.H. Storch, Fischer-tropsch reaction mechanism involving stepwise growth of carbon chain, J. Chem. Phys. 19 (3) (1951) 313-319. [37] F. Kapteijn, R.M. de Deugd, J.A. Moulijn, Fischer-Tropsch synthesis using monolithic catalysts, Catal. Today 105 (3-4) (2005) 350-356. [38] A.M. Hilmen, E. Bergene, O.A. Lindvag, D. Schanke, S. Eri, A. Holmen, Fischer-Tropsch synthesis on monolithic catalysts of different materials, Catal. Today 69 (1-4) (2001) 227-232. |