[1] L.Y. Jing, J.L. Huo, H.M. Wang, X.Q. You, M. Zhu, Y.M. Yang, Z.P. Yao, Experimental investigation on the evaporation and combustion processes of ammonium-dinitramide-based liquid propellant, J. Propuls. Power 33 (2) (2017) 343-349. [2] R. Gilardi, J. Flippen-Anderson, C. George, R.J. Butcher, A new class of flexible energetic salts: The crystal structures of the ammonium, lithium, potassium, and cesium salts of dinitramide, J. Am. Chem. Soc. 119 (40) (1997) 9411-9416. [3] P. Kumar, An overview on properties, thermal decomposition, and combustion behavior of ADN and ADN based solid propellants, Def. Technol. 14 (6) (2018) 661-673. [4] R. Raghavan, S. Jacob, Ion chromatographic analysis of ammonium dinitramide-oxidizer for propellant and pyrotechnic applications, Propellants Explos. Pyrotech. 38 (2) (2013) 273-277. [5] F.S. Wang, J. Chen, T. Zhang, H.S. Guan, H.M. Li, Experimental study on spray characteristics of ADN/water based gel propellant with impinging jet injectors, Propellants Explos. Pyrotech. 45 (9) (2020) 1357-1365. [6] Q.H. Zhang, J.M. Shreeve, Energetic ionic liquids as explosives and propellant fuels: A new journey of ionic liquid chemistry, Chem. Rev. 114 (20) (2014) 10527-10574. [7] J.H. Cui, J.Y. Han, J.G. Wang, R. Huang, Study on the crystal structure and hygroscopicity of ammonium dinitramide, J. Chem. Eng. Data 55 (9) (2010) 3229-3234. [8] T. Heintz, H. Pontius, J. Aniol, C. Birke, K. Leisinger, W. Reinhard, Ammonium dinitramide (ADN)-prilling, coating, and characterization, Propellants Explos. Pyrotech. 34 (3) (2009) 231-238. [9] J.J. Li, R.J. Yang, T. Zeng, J.H. Hu, W.Q. Tang, Z.H. Liu, L. Gong, Preparation and growth mechanism of micro spherical ammonium dinitramide crystal based on ultrasound-assisted solvent-antisolvent method, Ultrason. Sonochem. 78 (2021) 105716. [10] T. Heintz, M.J. Herrmann, Properties and structure of ADN-prills, Propellants Explos. Pyrotech. 44 (6) (2019) 679-686. [11] S.C. Tian, Y.L. Wang, X.J. Chen, D.D. Hu, Y.F. Hu, S. Zheng, Z.Y. Zhou, C. Xiao, Z.Q. Ren, Anti-hygroscopicity technologies for ammonium dinitramide: A review, Prop., Explos., Pyrotech. 48 (5) (2023) e202200344. [12] N. Yan, C. Bian, H.Y. Li, J.N. Wang, M. Xu, H.T. Huang, Pickering emulsion-templated encapsulation of ammonium dinitramide by graphene sheets for hygroscopic inhibition, Appl. Surf. Sci. 537 (2021) 147994. [13] A. Nangia, Supramolecular chemistry and crystal engineering, J. Chem. Sci. 122 (3) (2010) 295-310. [14] C.Y. Zhang, Y. Xiong, F.B. Jiao, M.M. Wang, H.Z. Li, Redefining the term of “cocrystal” and broadening its intention, Cryst. Growth Des. 19 (3) (2019) 1471-1478. [15] H. Xie, R.J. Gou, S.H. Zhang, Theoretical study on the effect of solvent behavior on ammonium dinitramide (ADN)/1, 4, 7, 10, 13, 16-hexaoxacyclooctadecane (18-crown-6) cocrystal growth morphology at different temperatures, Cryst. Res. Technol. 56 (4) (2021) 2000203. [16] M.K. Bellas, A.J. Matzger, Achieving balanced energetics through cocrystallization, Angew. Chem. Int. Ed. 58 (48) (2019) 17185-17188. [17] A.J. Bracuti, L, 2, 3-Triaminoguanidinium nitrate, Acta Crystallogr. Sect. B 35 (3) (1979) 760-761. [18] R. Damse, A. Singh, H. Singh, High energy propellants for advanced Gun ammunition based on RDX, GAP and TAGN compositions, Propellants Explos. Pyrotech. 32 (1) (2007) 52-60. [19] R. Toth, A. Coslanich, M. Ferrone, M. Fermeglia, S. Pricl, S. Miertus, E. Chiellini, Computer simulation of polypropylene/organoclay nanocomposites: Characterization of atomic scale structure and prediction of binding energy, Polymer 45 (23) (2004) 8075-8083. [20] X.J. Chen, L.C. He, X.R. Li, Z.Y. Zhou, Z.Q. Ren, Molecular simulation studies on the growth process and properties of ammonium dinitramide crystal, J. Phys. Chem. C 123 (17) (2019) 10940-10948. [21] H.R. Li, Y.J. Shu, C. Song, L. Chen, R.J. Xu, X.H. Ju, The smart precursors of energetic-energetic cocrystals from eutectic precursors, Chin. Chem. Lett. 25 (5) (2014) 783-786. [22] G.C. Lan, S.H. Jin, J. Li, J.Y. Wang, J.X. Li, S.S. Chen, L.J. Li, The study of external growth environments on the crystal morphology of ε-HNIW by molecular dynamics simulation, J. Mater. Sci. 53 (18) (2018) 12921-12936. [23] N. Liu, Y.N. Li, S. Zeman, Y.J. Shu, B.Z. Wang, Y.S. Zhou, Q.L. Zhao, W.L. Wang, Crystal morphology of 3, 4-bis(3-nitrofurazan-4-yl)furoxan (DNTF) in a solvent system: Molecular dynamics simulation and sensitivity study, CrystEngComm 18 (16) (2016) 2843-2851. [24] Musumeci D, Hunter C A, Prohens R, et al. Virtual cocrystal screening. Chemical Science, 2011, 2(5): 883-890. [25] Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 09 Revision B.01, Gaussian, Inc., Wallingford CT, 2010. [26] T. Clark, J. Chandrasekhar, G.W. Spitznagel, P. Von Rague Schleyer, Efficient diffuse function-augmented basis sets for anion calculations. III. The 3-21+G basis set for first-row elements, Li-F, J. Comput. Chem. 4 (3) (1983) 294-301. [27] D. Feller, The role of databases in support of computational chemistry calculations, J. Comput. Chem. 17 (13) (1996) 1571-1586. [28] R. Krishnan, J.S. Binkley, R. Seeger, J.A. Pople, Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions, J. Chem. Phys. 72 (1) (2008) 650. [29] B.P. Pritchard, D. Altarawy, B. Didier, T.D. Gibson, T.L. Windus, New basis set exchange: An open, up-to-date resource for the molecular sciences community, J. Chem. Inf. Model. 59 (11) (2019) 4814-4820. [30] K.L. Schuchardt, B.T. Didier, T. Elsethagen, L.S. Sun, V. Gurumoorthi, J. Chase, J. Li, T.L. Windus, Basis set exchange: A community database for computational sciences, J. Chem. Inf. Model. 47 (3) (2007) 1045-1052. [31] P.J. Stephens, F.J. Devlin, C.F. Chabalowski, M.J. Frisch, Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields, J. Phys. Chem. 98 (45) (1994) 11623-11627. [32] T. Lu, F.W. Chen, Multiwfn: A multifunctional wavefunction analyzer, J. Comput. Chem. 33 (5) (2012) 580-592. [33] J. Zhang, T. Lu, Efficient evaluation of electrostatic potential with computerized optimized code, Phys. Chem. Chem. Phys. 23 (36) (2021) 20323-20328. [34] Donnay J, Harker D. A new law of crystal morphology extending the Law of Bravais. American Mineralogist, 1937, 22: 457-477. [35] P. Hartman, P. Bennema, The attachment energy as a habit controlling factor I. Theoretical considerations, J. Cryst. Growth 49 (1) (1980) 145-156. [36] S. Varughese, M.S.R.N. Kiran, U. Ramamurty, G.R. Desiraju, Nanoindentation in crystal engineering: Quantifying mechanical properties of molecular crystals, Angew. Chem. Int. Ed 52 (10) (2013) 2701-2712. [37] W. Yao, Y. Yan, L. Xue, C. Zhang, G. Li, Q. Zheng, Y.S. Zhao, H. Jiang, J. Yao, Controlling the structures and photonic properties of organic nanomaterials by molecular design, Angew. Chem. Int. Ed 52 (33) (2013) 8713-8717. [38] M. Zhang, Z.Z. Liang, F. Wu, J.F. Chen, C.Y. Xue, H. Zhao, Crystal engineering of ibuprofen compounds: From molecule to crystal structure to morphology prediction by computational simulation and experimental study, J. Cryst. Growth 467 (2017) 47-53. [39] O. Talu, A.L. Myers, Molecular simulation of adsorption: Gibbs dividing surface and comparison with experiment, AlChE. J. 47 (5) (2001) 1160-1168. [40] M. Zhong, H. Qin, Q.J. Liu, Z. Jiao, F. Zhao, H.L. Shang, F.S. Liu, Z.T. Liu, Influences of different surfaces on anisotropic impact sensitivity of hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine, Vacuum 139 (2017) 117-121. [41] W. Humphrey, A. Dalke, K. Schulten, VMD: Visual molecular dynamics, J. Behav. Med. 14 (1) (1996) 33-8, 27-28. |