中国化学工程学报 ›› 2024, Vol. 76 ›› Issue (12): 157-186.DOI: 10.1016/j.cjche.2024.09.008
Nita Aryanti1,2, Aininu Nafiunisa1, Tutuk Djoko Kusworo1
收稿日期:
2024-04-23
修回日期:
2024-08-31
接受日期:
2024-09-02
出版日期:
2024-12-28
发布日期:
2024-10-18
通讯作者:
Nita Aryanti,E-mail:nita.aryanti@che.undip.ac.id
基金资助:
Nita Aryanti1,2, Aininu Nafiunisa1, Tutuk Djoko Kusworo1
Received:
2024-04-23
Revised:
2024-08-31
Accepted:
2024-09-02
Online:
2024-12-28
Published:
2024-10-18
Contact:
Nita Aryanti,E-mail:nita.aryanti@che.undip.ac.id
Supported by:
摘要: Polyvinylidene fluoride (PVDF) polymer-based membranes are extensively used in wastewater treatment, yet their partially hydrophobic nature poses significant challenges. Numerous studies have focused on creating super-wetting membranes to enhance the water affinity of PVDF membranes. This review provides a comprehensive discussion on the hydrophilization of PVDF-based membranes, examining the chemical and physical properties that influence water affinity. Followed by various fabrication techniques, appropriate modifier materials, efficient operational conditions, and recent advancements in hydrophilization methods. Additionally, the review systematically evaluates the performance of these hydrophilized membranes in separating surfactant-stabilized oil-in-water emulsions, highlighting the importance of long-term stability and environmental considerations. The antifouling mechanisms and the effectiveness of hydrophilic membranes in oil-water separation processes are also discussed, offering insights into the development and application of these technologies. The discussion explain in this review provides important information for the research of wastewater treatment, green material and green industry.
Nita Aryanti, Aininu Nafiunisa, Tutuk Djoko Kusworo. Recent study on hydrophilization of polyvinylidene fluoride membrane for oily-wastewater treatment[J]. 中国化学工程学报, 2024, 76(12): 157-186.
Nita Aryanti, Aininu Nafiunisa, Tutuk Djoko Kusworo. Recent study on hydrophilization of polyvinylidene fluoride membrane for oily-wastewater treatment[J]. Chinese Journal of Chemical Engineering, 2024, 76(12): 157-186.
[1] A.I. Adetunji, A.O. Olaniran, Treatment of industrial oily wastewater by advanced technologies: a review, Appl. Water Sci. 11 (6) (2021) 1-19. [2] D. Zou, Y.M. Lee, Design strategy of poly(vinylidene fluoride) membranes for water treatment, Prog. Polym. Sci. 128 (2022) 101535. [3] N. Aryanti, A. Nafiunisa, T.D. Kusworo, D.H. Wardhani, Separation of reactive dyes using natural surfactant and micellar-enhanced ultrafiltration membrane, J. Membr. Sci. Res. 7 (2020) 20-28. [4] O. Samuel, M.H.D. Othman, R. Kamaludin, T.A. Kurniawan, T. Li, H. Dzinun, A. Imtiaz, Treatment of oily wastewater using photocatalytic membrane reactors: a critical review, J. Environ. Chem. Eng. 10 (6) (2022) 108539. [5] N. Aryanti, A. Nafiunisa, T.D. Kusworo, D.H. Wardhani, Micellar-enhanced ultrafiltration using a plant-derived surfactant for dye separation in wastewater treatment, Membranes 10 (9) (2020) 220. [6] G. Barati Darband, M. Aliofkhazraei, S. Khorsand, S. Sokhanvar, A. Kaboli, Science and engineering of superhydrophobic surfaces: review of corrosion resistance, chemical and mechanical stability, Arab. J. Chem. 13 (1) (2020) 1763-1802. [7] S.N. Wan Ikhsan, N. Yusof, F. Aziz, A.F. Ismail, J. Jaafar, W.N. Wan Salleh, N. Misdan, Superwetting materials for hydrophilic-oleophobic membrane in oily wastewater treatment, J. Environ. Manag. 290 (2021) 112565. [8] L.L. Zhang, L. Xu, H.Y. Yu, P.Y. Yao, M. Zhang, F.X. Guo, L.M. Yu, Capsaicin mimic-polyethyleneimine crosslinked antifouling loose nanofiltration membrane for effective dye/salt wastewater treatment, J. Membr. Sci. 641 (2022) 119923. [9] H.J. Kang, Z.J. Cheng, H. Lai, H.X. Ma, Y.Y. Liu, X.M. Mai, Y.S. Wang, Q. Shao, L.C. Xiang, X.K. Guo, Z.H. Guo, Superlyophobic anti-corrosive and self-cleaning titania robust mesh membrane with enhanced oil/water separation, Sep. Purif. Technol. 201 (2018) 193-204. [10] R.C. Liu, S. Dangwal, I. Shaik, C. Aichele, S.J. Kim, Hydrophilicity-controlled MFI-type zeolite-coated mesh for oil/water separation, Sep. Purif. Technol. 195 (2018) 163-169. [11] X.M. Luo, Z.L. He, H.Y. Gong, L.M. He, Recent advances in oil-water separation materials with special wettability modified by graphene and its derivatives: a review, Chem. Eng. Process. Process. Intensif. 170 (2022) 108678. [12] C.G. Jothi Prakash, R. Prasanth, Approaches to design a surface with tunable wettability: a review on surface properties, J. Mater. Sci. 56 (1) (2021) 108-135. [13] Z.Z. Wei, Y. Jin, J. Li, L.Y. Jia, Y.J. Ma, M. Chen, Preparation of superhydrophobic PVDF composite membrane via catechol/polyamine co-deposition and Ag nanoparticles in situ growth for membrane distillation, Desalination 529 (2022) 115649. [14] Y.J. Zhai, J. Yang, Fabrication and modification of PVDF membrane by PDA@ZnO for enhancing hydrophilic and antifouling property, Arab. J. Chem. 16 (11) (2023) 105206. [15] H. Mokarizadeh, A. Raisi, Industrial wastewater treatment using PES UF membranes containing hydrophilic additives: experimental and modeling of fouling mechanism, Environ. Technol. Innov. 23 (2021) 101701. [16] S. Ahmadipouya, S.A. Mousavi, A. Shokrgozar, D.V. Mousavi, Improving dye removal and antifouling performance of polysulfone nanofiltration membranes by incorporation of UiO-66 metal-organic framework, J. Environ. Chem. Eng. 10 (3) (2022) 107535. [17] N. Misdan, N. Ramlee, N.H.H. Hairom, S.N.W. Ikhsan, N. Yusof, W.J. Lau, A.F. Ismail, N.A.H.M. Nordin, CuBTC metal organic framework incorporation for enhancing separation and antifouling properties of nanofiltration membrane, Chem. Eng. Res. Des. 148 (2019) 227-239. [18] A. Shockravi, V. Vatanpour, Z. Najjar, S. Bahadori, A. Javadi, A new high performance polyamide as an effective additive for modification of antifouling properties and morphology of asymmetric PES blend ultrafiltration membranes, Microporous Mesoporous Mater. 246 (2017) 24-36. [19] J. Kujawa, S. Boncel, S. Al-Gharabli, S. Koter, W. Kujawski, K. Kaneko, K. Li, E. Korczeniewski, A.P. Terzyk, Concerted role of PVDF and carbon nanomaterials for membrane science, Desalination 574 (2024) 117277. [20] A. Hai, A.A. Durrani, M. Selvaraj, F. Banat, M. Abu Haija, Oil-water emulsion separation using intrinsically superoleophilic and superhydrophobic PVDF membrane, Sep. Purif. Technol. 212 (2019) 388-395. [21] J.J. Yan, C.F. Xiao, C. Wang, Robust preparation of braid-reinforced hollow fiber membrane covered by PVDF nanofibers and PVDF/SiO2 micro/nanospheres for highly efficient emulsion separation, Sep. Purif. Technol. 298 (2022) 121593. [22] X.L. Han, H.X. Sun, L.L. Liu, Y.Q. Wang, G.H. He, J.D. Li, Improved desulfurization performance of polydimethylsiloxane membrane by incorporating metal organic framework CPO-27-Ni, Sep. Purif. Technol. 217 (2019) 86-94. [23] Z.G. Zhu, L.L. Zhong, Y. Wang, G.F. Zeng, W. Wang, Mechanically durable biomimetic fibrous membrane with superhydrophobicity and superoleophilicity for aqueous oil separation, Chin. Chem. Lett. 31 (10) (2020) 2619-2622. [24] S. Rasouli, N. Rezaei, H. Hamedi, S. Zendehboudi, X.L. Duan, Superhydrophobic and superoleophilic membranes for oil-water separation application: a comprehensive review, Mater. Des. 204 (2021) 109599. [25] S. Zarghami, T. Mohammadi, M. Sadrzadeh, B. Van der Bruggen, Superhydrophilic and underwater superoleophobic membranes-a review of synthesis methods, Prog. Polym. Sci. 98 (2019) 101166. [26] N.H. Ismail, W.N.W. Salleh, A.F. Ismail, H. Hasbullah, N. Yusof, F. Aziz, J. Jaafar, Hydrophilic polymer-based membrane for oily wastewater treatment: a review, Sep. Purif. Technol. 233 (2020) 116007. [27] K. Abuhasel, M. Kchaou, M. Alquraish, Y. Munusamy, Y.T. Jeng, Oily wastewater treatment:Overview of conventional and modern methods, challenges, and future opportunities, Water 13 (7) (2021) 980. [28] A.D.M. de Medeiros, C.J.G. da Silva Jr, J.D.P. de Amorim, I.J.B. Durval, A.F. de Santana Costa, L.A. Sarubbo, Oily wastewater treatment: methods, challenges, and trends, Processes 10 (4) (2022) 743. [29] C. O'Callaghan-Gordo, M. Orta-Martinez, M. Kogevinas, Health effects of non-occupational exposure to oil extraction, Environ. Health 15 (1) (2016) 56. [30] F. Banat, A. Hai, M. Selvaraj, B. Govindan, R. Krishnamoorthy, S.W. Hassan, Demulsification performance of superhydrophobic PVDF membrane: a parametric study, J. Membr. Sci. Res. 6 (2020) 390-394. [31] F. Fotovat, M. Hosseini, Treatment of oily wastewater by electrocoagulation: simultaneous optimization of oil removal efficiency and specific energy consumption, J. Water Process Eng. 55 (2023) 104221. [32] S. Kalla, Use of membrane distillation for oily wastewater treatment-a review, J. Environ. Chem. Eng. 9 (1) (2021) 104641. [33] A. Ghaffarian Khorram, N. Fallah, B. Nasernejad, N. Afsham, M. Esmaelzadeh, V. Vatanpour, Electrochemical-based processes for produced water and oily wastewater treatment: a review, Chemosphere 338 (2023) 139565. [34] M. Keyvan Hosseini, L. Liu, P. Keyvan Hosseini, A. Bhattacharyya, K. Lee, J.H. Miao, B. Chen, Review of hollow fiber (HF) membrane filtration technology for the treatment of oily wastewater: applications and challenges, J. Mar. Sci. Eng. 10 (9) (2022) 1313. [35] Q.H. Cai, Z.W. Zhu, B. Chen, B.Y. Zhang, Oil-in-water emulsion breaking marine bacteria for demulsifying oily wastewater, Water Res. 149 (2019) 292-301. [36] H.S. Wang, J.X. Yang, H. Zhang, J. Zhao, H.Z. Liu, J.L. Wang, G.B. Li, H. Liang, Membrane-based technology in water and resources recovery from the perspective of water social circulation: a review, Sci. Total Environ. 908 (2024) 168277. [37] E. Nascimben Santos, Z. Laszlo, C. Hodur, G. Arthanareeswaran, G. Vereb, Photocatalytic membrane filtration and its advantages over conventional approaches in the treatment of oily wastewater: a review, Asia Pac. J. Chem. Eng. 15 (5) (2020) e2533. [38] N. Zhang, X.W. Yang, Y.L. Wang, Y.F. Qi, Y.N. Zhang, J.L. Luo, P. Cui, W. Jiang, A review on oil/water emulsion separation membrane material, J. Environ. Chem. Eng. 10 (2) (2022) 107257. [39] N.U. Barambu, M.R. Bilad, M.A. Bustam, K.A. Kurnia, M.H.D. Othman, N.A.H.M. Nordin, Development of membrane material for oily wastewater treatment: a review, Ain Shams Eng. J. 12 (2) (2021) 1361-1374. [40] J.E. Marshall, A. Zhenova, S. Roberts, T. Petchey, P.C. Zhu, C.E.J. Dancer, C.R. McElroy, E. Kendrick, V. Goodship, On the solubility and stability of polyvinylidene fluoride, Polymers 13 (9) (2021) 1354. [41] A. Sasmal, S. Sen, J.A. Chelvane, A. Arockiarajan, PVDF based flexible magnetoelectric composites for capacitive energy storage, hybrid mechanical energy harvesting and self-powered magnetic field detection, Polymer 281 (2023) 126141. [42] A. Yadav, K. Singh, V.K. Shahi, Side-chain grafted functional groups poly(vinylidene fluoride-hexafluoropropylene) anti-fouling fluorinated polymer membrane with tuneable hydrophobicity for distillation, Desalination 525 (2022) 115501. [43] E.J. Sisay, G. Vereb, Z. Pap, T. Gyulavari, A. Agoston, J. Kopniczky, C. Hodur, G. Arthanareeswaran, G.K. Sivasundari Arumugam, Z. Laszlo, Visible-light-driven photocatalytic PVDF-TiO2/CNT/BiVO4 hybrid nanocomposite ultrafiltration membrane for dairy wastewater treatment, Chemosphere 307 (Pt 1) (2022) 135589. [44] C.C. Li, K.L. Jin, K.R. Hou, X. Su, A.Q. Chen, S.X. Zhai, Z.S. Cai, Y.P. Zhao, Multifunctional PVDF-fabric-based bilayer membrane with wettability difference for efficient removal of direct dye from water and high-flux oil/water separation, Colloids Surf. A Physicochem. Eng. Aspects 686 (2024) 133355. [45] M. Ahsani, H. Hazrati, M. Javadi, M. Ulbricht, R. Yegani, Preparation of antibiofouling nanocomposite PVDF/Ag-SiO2 membrane and long-term performance evaluation in the MBR system fed by real pharmaceutical wastewater, Sep. Purif. Technol. 249 (2020) 116938. [46] M. Javadi, Y. Jafarzadeh, R. Yegani, S. Kazemi, PVDF membranes embedded with PVP functionalized nanodiamond for pharmaceutical wastewater treatment, Chem. Eng. Res. Des. 140 (2018) 241-250. [47] S.G. Xu, Y.F. Liu, Y. Yu, X.T. Zhang, J. Zhang, Y.F. Li, PAN/PVDF chelating membrane for simultaneous removal of heavy metal and organic pollutants from mimic industrial wastewater, Sep. Purif. Technol. 235 (2020) 116185. [48] T. El-badawy, M.H.D. Othman, M.R. Adam, R. Kamaludin, A.F. Ismail, M.A. Rahman, J. Jaafar, S. Rajabzadeh, H. Matsuyama, J. Usman, T.A. Kurniawan, Y.O. Raji, S.C. Mamah, H. Abdullah, Braid-reinforced PVDF hollow fiber membranes for high-efficiency separation of oily wastewater, J. Environ. Chem. Eng. 10 (2) (2022) 107258. [49] O. Makanjuola, F. Ahmed, I. Janajreh, R. Hashaikeh, Development of a dual-layered PVDF-HFP/cellulose membrane with dual wettability for desalination of oily wastewater, J. Membr. Sci. 570 (2019) 418-426. [50] X.J. Chen, G. Huang, C.J. An, R.F. Feng, Y.H. Wu, C. Huang, Plasma-induced PAA-ZnO coated PVDF membrane for oily wastewater treatment: preparation, optimization, and characterization through Taguchi OA design and synchrotron-based X-ray analysis, J. Membr. Sci. 582 (2019) 70-82. [51] M. Mansha, B. Salhi, S. Ali, S.A. Khan, N. Baig, Novel procaine-based gemini zwitterion incorporated PVDF membranes for efficient treatment of oily wastewater, J. Environ. Chem. Eng. 10 (3) (2022) 107935. [52] H. Mahdavi, M.A. Kerachian, M. Abazari, Synergistic effect of GO@SiO2 and GO@ZnO nano-hybrid particles with PVDF-g-PMMA copolymer in high-flux ultrafiltration membrane for oily wastewater treatment and antifouling properties, J. Ind. Eng. Chem. 108 (2022) 374-388. [53] P. Saxena, P. Shukla, A comprehensive review on fundamental properties and applications of poly(vinylidene fluoride) (PVDF), Adv. Compos. Hybrid Mater. 4 (1) (2021) 8-26. [54] M. Rehman Asghar, K. Divya, H.N. Su, Q. Xu, Advancement of PVDF and its copolymer-based proton exchange membranes for direct methanol fuel cells: a review, Eur. Polym. J. 213 (2024) 113110. [55] T. Nishiyama, T. Sumihara, Y. Sasaki, E. Sato, M. Yamato, H. Horibe, Crystalline structure control of poly(vinylidene fluoride) films with the antisolvent addition method, Polym. J. 48 (10) (2016) 1035-1038. [56] K.Y. Chan, C.L. Li, D.M. Wang, J.Y. Lai, Formation of porous structures and crystalline phases in poly(vinylidene fluoride) membranes prepared with nonsolvent-induced phase separation-roles of solvent polarity, Polymers 15 (5) (2023) 1314. [57] A. Ali Shah, H.J. Heo, S. Park, E. Yi, Y. Cho, S.E. Nam, Y.I. Park, H. Kim, E.H. Sohn, H. Park, J.F. Kim, Origin of fluoropolymer affinity toward water and its impact on membrane performance, ACS Appl. Polym. Mater. 2 (11) (2020) 5249-5258. [58] T. Smejkalova, S. Talu, R. Dallaev, K. Castkova, D. Sobola, A. Nazarov, SEM imaging and XPS characterization of doped PVDF fibers, E3S Web Conf. 270 (2021) 01011. [59] P. Sedlak, D. Sobola, A. Gajdos, R. Dallaev, A. Nebojsa, P. Kubersky, Surface analyses of PVDF/NMP/[EMIM][TFSI] solid polymer electrolyte, Polymers 13 (16) (2021) 2678. [60] R. Dallaev, T. Pisarenko, D. Sobola, F. Orudzhev, S. Ramazanov, T. Trcka, Brief review of PVDF properties and applications potential, Polymers 14 (22) (2022) 4793. [61] S. Ebnesajjad, Introduction to Fluoropolymers: Materials, Technology and Applications (second ed.), Elsevier, Amsterdam, 2017. [62] M. Wang, Z.W. Xu, Y.F. Hou, P. Li, H.X. Sun, Q.J. Niu, Fabrication of a superhydrophilic PVDF membrane with excellent chemical and mechanical stability for highly efficient emulsion separation, Sep. Purif. Technol. 251 (2020) 117408. [63] T.A. Otitoju, A.L. Ahmad, B.S. Ooi, Polyvinylidene fluoride (PVDF) membrane for oil rejection from oily wastewater: a performance review, J. Water Process Eng. 14 (2016) 41-59. [64] J. Garcia-Ivars, M.J. Corbaton-Baguena, M.I. Iborra-Clar, Development of mixed matrix membranes: incorporation of metal nanoparticles in polymeric membranes, In: Nanoscale Materials in Water Purification, Elsevier, Amsterdam, 2019, pp 153-178. [65] Y. Morita, Y. Saito, S. Kumagai, T. Kameda, T. Shiratori, T. Yoshioka, Alkaline hydrolysis of photovoltaic backsheet containing PET and PVDF for the recycling of PVDF, J. Mater. Cycles Waste Manag. 25 (2) (2023) 674-683. [66] J. Sharma, C. Totee, V. Kulshrestha, B. Ameduri, Spectroscopic evidence and mechanistic insights on dehydrofluorination of PVDF in alkaline medium, Eur. Polym. J. 201 (2023) 112580. [67] C.J.M. Lye, H.J. Xu, R. Wang, Impact of NaOCl ageing on reinforced PVDF hollow fiber membranes used in membrane bioreactor, J. Water Process Eng. 44 (2021) 102408. [68] H.R. Yu, S.Y. Shangguan, H.Y. Yang, H.W. Rong, F.S. Qu, Chemical cleaning and membrane aging of poly(vinylidene fluoride) (PVDF) membranes fabricated via non-solvent induced phase separation (NIPS) and thermally induced phase separation (TIPS), Sep. Purif. Technol. 313 (2023) 123488. [69] S. Ulicna, M. Owen-Bellini, S.L. Moffitt, A. Sinha, J. Tracy, K. Roy-Choudhury, D.C. Miller, P. Hacke, L.T. Schelhas, A study of degradation mechanisms in PVDF-based photovoltaic backsheets, Sci. Rep. 12 (1) (2022) 14399. [70] P. Qu, X.L. Liu, S.J. Wang, C. Xiao, S.S. Liu, Moderate dehydrofluorinated PVDF with high energy density, Mater. Lett. 221 (2018) 275-278. [71] J. Castillo, A. Robles-Fernandez, R. Cid, J.A. Gonzalez-Marcos, M. Armand, D. Carriazo, H. Zhang, A. Santiago, Dehydrofluorination process of poly(vinylidene difluoride) PVDF-based gel polymer electrolytes and its effect on lithium-sulfur batteries, Gels 9 (4) (2023) 336. [72] C. Van Goethem, M. Mertens, I.F.J. Vankelecom, Crosslinked PVDF membranes for aqueous and extreme pH nanofiltration, J. Membr. Sci. 572 (2019) 489-495. [73] G.Q. Yi, J.L. Li, L.C. Henderson, W.W. Lei, L. Du, S.F. Zhao, Enhancing thermal conductivity of polyvinylidene fluoride composites by carbon fiber: length effect of the filler, Polymers 14 (21) (2022) 4599. [74] J. Qian, C. Fu, X.Y. Wu, X.H. Ran, W. Nie, Promotion of poly(vinylidene fluoride) on thermal stability and rheological property of ethylene-tetrafluoroethylene copolymer, E-Polymers 18 (6) (2018) 541-549. [75] S. Xiang, X.X. Tang, S. Rajabzadeh, P.F. Zhang, Z.Y. Cui, H. Matsuyama, Fabrication of PVDF/EVOH blend hollow fiber membranes with hydrophilic property via thermally induced phase process, Sep. Purif. Technol. 301 (2022) 122031. [76] M.A. Zakaria, K.F. Fridiasari, A.F. Ni’mah, A. Macorowalie, Y. Santoso, O.A. Saputra, M. Bagaskara, R.E. Mustofa, E. Pramono, C. Purnawan, Thermal properties of hybrid membrane-based PVDF modified with cellulose and silylated cellulose, J. Phys.: Conf. Ser. 2190 (1) (2022) 012017. [77] B. Rahmaniyan, T. Mohammadi, M.A. Tofighy, Development of high flux PVDF/modified TNTs membrane with improved properties for desalination by vacuum membrane distillation, J. Environ. Chem. Eng. 9 (6) (2021) 106730. [78] A.J. de Jesus Silva, M.M. Contreras, C.R. Nascimento, M.F. da Costa, Kinetics of thermal degradation and lifetime study of poly(vinylidene fluoride) (PVDF) subjected to bioethanol fuel accelerated aging, Heliyon 6 (7) (2020) e04573. [79] M.Y. Li, I. Katsouras, C. Piliego, G. Glasser, I. Lieberwirth, P.W.M. Blom, D.M. de Leeuw, Controlling the microstructure of poly(vinylidene-fluoride) (PVDF) thin films for microelectronics, J. Mater. Chem. C 1 (46) (2013) 7695-7702. [80] T.V. Terziyan, A.P. Safronov, Solubility and H-bonding of poly(vinylidene fluoride) copolymers in carbonyl liquids: experiment and molecular simulation, J. Mol. Liq. 275 (2019) 378-383. [81] I.A. Ike, J.H. Zhang, A. Groth, J.D. Orbell, M. Duke, Effects of dissolution conditions on the properties of PVDF ultrafiltration membranes, Ultrason. Sonochem. 39 (2017) 716-726. [82] M. Baniasadi, Z. Xu, S. Moreno, S. Daryadel, J.Z. Cai, M. Naraghi, M. Minary-Jolandan, Effect of thermomechanical post-processing on chain orientation and crystallinity of electrospun P(VDF-TrFE) nanofibers, Polymer 118 (2017) 223-235. [83] J.J. Li, Q.J. Meng, W.J. Li, Z.C. Zhang, Influence of crystalline properties on the dielectric and energy storage properties of poly(vinylidene fluoride), J. Appl. Polym. Sci. 122 (3) (2011) 1659-1668. [84] W.A.F. Wae AbdulKadir, A.L. Ahmad, O.B. Seng, N.F. Che Lah, Biomimetic hydrophobic membrane: a review of anti-wetting properties as a potential factor in membrane development for membrane distillation (MD), J. Ind. Eng. Chem. 91 (2020) 15-36. [85] T. Huhtamaki, X.L. Tian, J.T. Korhonen, R.H.A. Ras, Surface-wetting characterization using contact-angle measurements, Nat. Protoc. 13 (7) (2018) 1521-1538. [86] A.B.D. Cassie, S. Baxter, Wettability of porous surfaces, Trans. Faraday Soc. 40 (0) (1944) 546-551. [87] A.B.D. Cassie, S. Baxter, Wettability of porous surfaces, Trans. Faraday Soc. 40 (0) (1944) 546-551. [88] R.N. Wenzel, Resistance of solid surfaces to wetting by water, Ind. Eng. Chem. 28 (8) (1936) 988-994. [89] S.M. Seyed Shahabadi, J.A. Brant, Bio-inspired superhydrophobic and superoleophilic nanofibrous membranes for non-aqueous solvent and oil separation from water, Sep. Purif. Technol. 210 (2019) 587-599. [90] I.S. Omeje, T.E. Itina, Numerical study of the wetting dynamics of droplet on laser textured surfaces: beyond classical Wenzel and Cassie-Baxter model, Appl. Surf. Sci. Adv. 9 (2022) 100250. [91] L.B. Zheng, K. Wang, D.Y. Hou, X.L. Jia, Z.C. Zhao, Hierarchically-structured superhydrophobic POSS/PVDF composite membrane for anti-fouling and anti-wetting membrane distillation, Desalination 526 (2022) 115512. [92] N.F. Himma, N. Prasetya, S. Anisah, I.G. Wenten, Superhydrophobic membrane: progress in preparation and its separation properties, Rev. Chem. Eng. 35 (2) (2019) 211-238. [93] X.Y. Zhang, Z. Li, K.S. Liu, L. Jiang, Bioinspired multifunctional foam with self-cleaning and oil/water separation, Adv. Funct. Mater. 23 (22) (2013) 2881-2886. [94] B. Liu, J.X. Tang, J. Li, Y.G. Shan, Y.H. Jiang, Soft wetting: modified Cassie-Baxter equation for soft superhydrophobic surfaces, Colloids Surf. A Physicochem. Eng. Aspects 677 (2023) 132348. [95] M. Beitollahpoor, M. Farzam, N.S. Pesika, Determination of the sliding angle of water drops on surfaces from friction force measurements, Langmuir 38 (6) (2022) 2132-2136. [96] M.N. Qu, D. He, Z.X. Luo, R. Wang, F. Shi, Y.J. Pang, W.C. Sun, L. Peng, J.M. He, Facile preparation of a multifunctional superhydrophilic PVDF membrane for highly efficient organic dyes and heavy metal ions adsorption and oil/water emulsions separation, Colloids Surf. A Physicochem. Eng. Aspects 637 (2022) 128231. [97] C.H. Kung, P.K. Sow, B. Zahiri, W. Merida, Assessment and interpretation of surface wettability based on sessile droplet contact angle measurement: challenges and opportunities, Adv. Mater. Interfac. 6 (18) (2019) 1900839. [98] M. Ostadi, F.S. Kamelian, T. Mohammadi, Superhydrophilic micro/nano hierarchical functionalized-CuO/PVDF nanocomposite membranes with ultra-low fouling/biofouling performance for acetate wastewater treatment: MBR application, J. Membr. Sci. 676 (2023) 121591. [99] H.H. Tseng, J.C. Wu, Y.C. Lin, G.L. Zhuang, Superoleophilic and superhydrophobic carbon membranes for high quantity and quality separation of trace water-in-oil emulsions, J. Membr. Sci. 559 (2018) 148-158. [100] H.J. Shao, Y.T. Qi, J.F. Cheng, S.H. Qin, Fabrication of superhydrophilic PVDF hollow fiber membranes with a fish-scale surface for water treatment, React. Funct. Polym. 143 (2019) 104330. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||