[1] M. Vijayakumar, A. Bharathi Sankar, D. Sri Rohita, T.N. Rao, M. Karthik, Conversion of biomass waste into high performance supercapacitor electrodes for real-time supercapacitor applications, ACS Sustainable Chem. Eng. 7(20) (2019) 17175-17185. [2] A.M. Abioye, F.N. Ani, Recent development in the production of activated carbon electrodes from agricultural waste biomass for supercapacitors: a review, Renew. Sustain. Energy Rev. 52(2015) 1282-1293. [3] J. Deng, M.M. Li, Y. Wang, Biomass-derived carbon: synthesis and applications in energy storage and conversion, Green Chem. 18(18) (2016) 4824-4854. [4] D.X. Guo, X.M. Song, L.C. Tan, H.Y. Ma, W.F. Sun, H.J. Pang, L.L. Zhang, X.M. Wang, A facile dissolved and reassembled strategy towards sandwich-like rGO@NiCoAl-LDHs with excellent supercapacitor performance, Chem. Eng. J. 356(2019) 955-963. [5] W.D. Qiu, H.B. Xiao, M.H. Yu, Y. Li, X.H. Lu, Surface modulation of NiCo2O4 nanowire arrays with significantly enhanced reactivity for ultrahigh-energy supercapacitors, Chem. Eng. J. 352(2018) 996-1003. [6] H. Chen, Y.C. Guo, F. Wang, G. Wang, P.R. Qi, X.H. Guo, B. Dai, F. Yu, An activated carbon derived from tobacco waste for use as a supercapacitor electrode material, N. Carbon Mater. 32(6) (2017) 592-599. [7] K.S. Lee, M.S. Park, J.D. Kim, Nitrogen doped activated carbon with nickel oxide for high specific capacitance as supercapacitor electrodes, Colloids Surf. A Physicochem. Eng. Aspects 533(2017) 323-329. [8] E.E. Miller, Y. Hua, F.H. Tezel, Materials for energy storage: review of electrode materials and methods of increasing capacitance for supercapacitors, J. Energy Storage 20(2018) 30-40. [9] J.Q. Shao, M.Y. Song, G. Wu, Y.H. Zhou, J.F. Wan, X. Ren, F.W. Ma, 3D carbon nanocage networks with multiscale pores for high-rate supercapacitors by flower-like template and in situ coating, Energy Storage Mater. 13(2018) 57-65. [10] S.J. Li, K.H. Han, Y. Gao, M.Y. Zhang, Q. Wang, L.H. Zhang, Synergistic optimization of double layer capacitance and pseudocapacitance of activated carbon by nickel oxide loading, Int. J. Electrochem. Sci. 14(12) (2019) 10775-10789. [11] C. Liu, Q.Q. Ren, S.W. Zhang, B.S. Yin, L.F. Que, L. Zhao, X.L. Sui, F.D. Yu, X.F. Li, D.M. Gu, Z.B. Wang, High energy and power lithium-ion capacitors based on Mn3O4/3D-graphene as anode and activated polyaniline-derived carbon nanorods as cathode, Chem. Eng. J. 370(2019) 1485-1492. [12] Y. Li, J.X. Chen, P.W. Cai, Z.H. Wen, An electrochemically neutralized energy-assisted low-cost acid-alkaline electrolyzer for energy-saving electrolysis hydrogen generation, J. Mater. Chem. A 6(12) (2018) 4948-4954. [13] S.J. Li, M.Y. Zhang, Y. Gao, H. Li, Q. Wang, L.H. Zhang, Preparation of a porous carbon from Enteromorpha prolifera with excellent electrochemical properties, N. Carbon Mater. 36(6) (2021) 1158-1166. [14] Y. Tao, X.Y. Xie, W. Lv, D.M. Tang, D.B. Kong, Z.H. Huang, H. Nishihara, T. Ishii, B.H. Li, D. Golberg, F.Y. Kang, T. Kyotani, Q.H. Yang, Towards ultrahigh volumetric capacitance: graphene derived highly dense but porous carbons for supercapacitors, Sci. Rep. 3(2013) 2975. [15] F. Barzegar, A. Bello, J.K. Dangbegnon, N. Manyala, X.H. Xia, Asymmetric supercapacitor based on activated expanded graphite and pinecone tree activated carbon with excellent stability, Appl. Energy 207(2017) 417-426. [16] M. Fujishige, I. Yoshida, Y. Toya, Y. Banba, K.I. Oshida, Y.S. Tanaka, P. Dulyaseree, W. Wongwiriyapan, K. Takeuchi, Preparation of activated carbon from bamboo-cellulose fiber and its use for EDLC electrode material, J. Environ. Chem. Eng. 5(2) (2017) 1801-1808. [17] T. Sesuk, P. Tammawat, P. Jivaganont, K. Somton, P. Limthongkul, W. Kobsiriphat, Activated carbon derived from coconut coir pith as high performance supercapacitor electrode material, J. Energy Storage 25(2019) 100910. [18] C.Y. Xiao, W.L. Zhang, H.B. Lin, Y.X. Tian, X.X. Li, Y.Y. Tian, H.Y. Lu, Modification of a rice husk-based activated carbon by thermal treatment and its effect on its electrochemical performance as a supercapacitor electrode, N. Carbon Mater. 34(4) (2019) 341-348. [19] F.Z. Kong, Y.F. Liu, J. Li, X.L. Wen, J.X. Cheng, Effect of activator addition on the electrochemical performance of petroleum coke-based activated carbon electrode materials, J Uni Sci Tech. Liaoning 4(2023) 12-15. (in Chinese). [20] Z.H. Zhang, Q. Wang, B.Q. Zhang, F.M. Zhang, C.X. Zhang, G.X. Huang, B.L. Xing, Effect of modification on structure and electrochemical properties of coal based activated carbon, Clean Coal Technol 28(2022) 127-136. (in Chinese). [21] B.C. Xue, J.H. Xu, R. Xiao, Synthesis of hierarchically porous carbon with tailored porosity and electrical conductivity derived from hard-soft carbon precursors for enhanced capacitive performance, ACS Sustainable Chem. Eng. 9(47) (2021) 15925-15934. [22] Y.F. Yin, Q.J. Liu, Y.T. Zhao, T.T. Chen, J. Wang, L. Gui, C.Y. Lu, Recent progress and future directions of biomass-derived hierarchical porous carbon: designing, preparation, and supercapacitor applications, Energy Fuels 37(5) (2023) 3523-3554. [23] F. Sun, D.Y. Wu, J.H. Gao, T. Pei, Y.Q. Chen, K.F. Wang, H.P. Yang, G.B. Zhao, Graphitic porous carbon with multiple structural merits for high-performance organic supercapacitor, J. Power Sources 477(2020) 228759. [24] Y.N. Gong, D.L. Li, C.Z. Luo, Q. Fu, C.X. Pan, Highly porous graphitic biomass carbon as advanced electrode materials for supercapacitors, Green Chem. 19(17) (2017) 4132-4140. [25] S.J. Li, J.G. Zhang, J.X. Li, K.H. Han, X.D. Han, C.M. Lu, Preparation and electrochemical property of gulfweed-based super activated carbon for supercapacitor, J. Mater. Eng. 46(7) (2018) 157-164. [26] S.J. Li, T. Xing, Y.L. Wang, P.W. Lu, W.X. Kong, S.N. Li, X.M. Su, X.K. Wei, Pore structure regulation and electrochemical performance characterization of activated carbon for supercapacitors, Front. Energy Res. 9(2021) 680761. [27] Y.Z. Wang, Y.X. Liu, D.H. Wang, C. Wang, L. Guo, T.F. Yi, Free-standing honeycomb-like N doped carbon foam derived from coal tar pitch for high-performance supercapacitor, Appl. Surf. Sci. 506(2020) 145014. [28] J. Abdulsalam, J. Mulopo, B. Oboirien, S. Bada, R. Falcon, Experimental evaluation of activated carbon derived from South Africa discard coal for natural gas storage, Int. J. Coal Sci. Technol. 6(3) (2019) 459-477. [29] Xuemei Lv, Tiankai Zhang, Yunhuan Luo, Yongfa Zhang, Ying Wang, Guojie Zhang, Study on carbon nanotubes and activated carbon hybrids by pyrolysis of coal, J. Anal. Appl. Pyrol. 146(2020) 104717. [30] S. Biloe, V. Goetz, A. Guillot, Optimal design of an activated carbon for an adsorbed natural gas storage system, Carbon 40(8) (2002) 1295-1308. [31] L. Muniandy, F. Adam, A.R. Mohamed, E.P. Ng, The synthesis and characterization of high purity mixed microporous/mesoporous activated carbon from rice husk using chemical activation with NaOH and KOH, Microporous Mesoporous Mater. 197(2014) 316-323. [32] Y.H. Liu, X.X. Qu, G.X. Huang, B.L. Xing, F.M. Zhang, B.B. Li, C.X. Zhang, Y.J. Cao, 3-dimensional porous carbon with high nitrogen content obtained from Longan shell and its excellent performance for aqueous and all-solid-state supercapacitors, Nanomaterials 10(4) (2020) 808. [33] M. Krol, G. Gryglewicz, J. Machnikowski, KOH activation of pitch-derived carbonaceous materials-effect of carbonization degree, Fuel Process. Technol. 92(1) (2011) 158-165. [34] Y.C. Jiang, Z.F. He, X. Cui, Z.Y. Liu, J.F. Wan, Y.F. Liu, F.W. Ma, Lamellar hierarchical porous carbon prepared from coal tar pitch through a lamellar hard template combined with the precarbonization and activation method for supercapacitors, ACS Appl. Energy Mater. 5(12) (2022) 15199-15210. [35] J.X. Cheng, Z.J. Lu, X.F. Zhao, X.X. Chen, Y.H. Liu, Green needle coke-derived porous carbon for high-performance symmetric supercapacitor, J. Power Sources 494(2021) 229770. [36] X.X. Zuo, K. Chang, J. Zhao, Z.Z. Xie, H.W. Tang, B. Li, Z.R. Chang, Bubble-template-assisted synthesis of hollow fullerene-like MoS2 nanocages as a lithium ion battery anode material, J. Mater. Chem. A 4(1) (2016) 51-58. [37] J.Q. Shao, F.W. Ma, G. Wu, C.C. Dai, W.D. Geng, S.J. Song, J.F. Wan, In-situ MgO (CaCO3) templating coupled with KOH activation strategy for high yield preparation of various porous carbons as supercapacitor electrode materials, Chem. Eng. J. 321(2017) 301-313. [38] J. Bourke, M. Manley-Harris, C. Fushimi, K. Dowaki, T. Nunoura, M.J. Antal, Do all carbonized charcoals have the same chemical structure? 2. A model of the chemical structure of carbonized charcoal, Ind. Eng. Chem. Res. 46(18) (2007) 5954-5967. [39] X.K. Yu, Y.X. Shi, H.J. Wang, N.S. Cai, C. Li, A.F. Ghoniem, Using potassium catalytic gasification to improve the performance of solid oxide direct carbon fuel cells: experimental characterization and elementary reaction modeling, J. Power Sources 252(2014) 130-137. [40] B.L. Xing, H. Guo, L.J. Chen, Z.F. Chen, C.X. Zhang, G.X. Huang, W. Xie, J.L. Yu, Lignite-derived high surface area mesoporous activated carbons for electrochemical capacitors, Fuel Process. Technol. 138(2015) 734-742. [41] A. Pozio, M.D. Francesco, A. Cemmi, F. Cardellini, L. Giorgi, Power limitations of supercapacitor operation associated with resistance and capacitance distribution in porous electrode devices, J. Power Sources 105(2) (2002) 165-181. [42] A.K. Mishra, S. Ramaprabhu, Functionalized graphene-based nanocomposites for supercapacitor application, J. Phys. Chem. C 115(29) (2011) 14006-14013. [43] J.H. Xu, C.L. Xia, M. Li, R. Xiao, Porous nitrogen-doped carbons as effective catalysts for oxygen reduction reaction synthesized from cellulose and polyamide, Chemelectrochem 6(22) (2019) 5735-5743. [44] H.X. Sun, B.L. Yang, A. Li, Biomass derived porous carbon for efficient capture of carbon dioxide, organic contaminants and volatile iodine with exceptionally high uptake, Chem. Eng. J. 372(2019) 65-73. [45] C.F. Ding, T.Y. Liu, X.D. Yan, L.B. Huang, S. Ryu, J.L. Lan, Y.H. Yu, W.H. Zhong, X.P. Yang, An ultra-microporous carbon material boosting integrated capacitance for cellulose-based supercapacitors, Nano-Micro Lett. 12(1) (2020) 63. [46] S. Biniak, G. Szymanski, J. Siedlewski, A. Swiatkowski, The characterization of activated carbons with oxygen and nitrogen surface groups, Carbon 35(12) (1997) 1799-1810. [47] Y.P. Zhai, Y.Q. Dou, D.Y. Zhao, P.F. Fulvio, R.T. Mayes, S. Dai, Carbon materials for chemical capacitive energy storage, Adv. Mater. Deerfield Beach Fla 23(42) (2011) 4828-4850. [48] X.Y. Zhang, B.K. Sun, X. Fan, H.C. Bai, P. Liang, G.M. Zhao, B.K. Saikia, X.Y. Wei, Building relationships between molecular composition of carbon precursor and capacitance of a hierarchical porous carbon-based supercapacitor, ACS Appl. Energy Mater. 4(1) (2021) 985-995. [49] H. Zhou, B.L. Lv, Y. Xu, D. Wu, Synthesis and electrochemical properties of NiO nanospindles, Mater. Res. Bull. 50(2014) 399-404. [50] X. Zhao, M. Zhang, W. Pan, R. Yang, X.D. Sun, Self-template synthesis of nitrogen-doped hollow carbon nanospheres with rational mesoporosity for efficient supercapacitors, Materials 14(13) (2021) 3619. [51] S.M. Benoy, D. Bhattacharjya, M. Bora, B.K. Saikia, Blowing agent-induced hierarchical porous carbon from low-quality coal for high-performance supercapacitor, ACS Appl. Electron. Mater. 4(12) (2022) 6322-6334. [52] D. Bhattacharjya, J.S. Yu, Activated carbon made from cow dung as electrode material for electrochemical double layer capacitor, J. Power Sources 262(2014) 224-231. [53] H.Y. Sun, S.W. Liu, Q.F. Lu, H.Y. Zhong, Template-synthesis of hierarchical Ni(OH)2 hollow spheres with excellent performance as supercapacitor, Mater. Lett. 128(2014) 136-139. [54] H. Zhang, Z. Zhang, J.D. Luo, X.T. Qi, J. Yu, J.X. Cai, J.C. Wei, Z.Y. Yang, A chemical blowing strategy to fabricate biomass-derived carbon-aerogels with graphene-like nanosheet structures for high-performance supercapacitors, ChemSusChem 12(11) (2019) 2462-2470. [55] D. Qu, M. Zheng, L.G. Zhang, H.F. Zhao, Z.G. Xie, X.B. Jing, R.E. Haddad, H.Y. Fan, Z.C. Sun, Formation mechanism and optimization of highly luminescent N-doped graphene quantum dots, Sci. Rep. 4(2014) 5294. [56] S.M. Pawar, A.I. Inamdar, K.V. Gurav, Y. Jo, H. Kim, J.H. Kim, H. Im, Effect of oxidant on the structural, morphological and supercapacitive properties of nickel hydroxide nanoflakes electrode films, Mater. Lett. 141(2015) 336-339. [57] N. Boonraksa, E. Swatsitang, K. Wongsaprom, Biomass nanoarchitectonics with activated rice husk char for nanoporous carbon as electrode material: enhancing supercapacitor electrochemical performance, J. Non-Cryst. Solids 637(2024) 123064. [58] B.S. Zhu, S.X. Zhai, Facile design and superior electrochemical performance of fluorine doped graphene slice for supercapacitor electrodes, Mater. Lett. 371(2024) 136873. [59] M. Rahaman, M.R. Islam, M.R. Islam, Improved electrochemical performance of defect-induced supercapacitor electrodes based on MnS-incorporated MnO2 nanorods, Nanoscale Adv. 6(16) (2024) 4103-4110. [60] J.T. Li, R. Xiao, M. Li, H.Y. Zhang, S.L. Wu, C.L. Xia, Template-synthesized hierarchical porous carbons from bio-oil with high performance for supercapacitor electrodes, Fuel Process. Technol. 192(2019) 239-249. [61] K. Aruchamy, R. Nagaraj, H.M. Manohara, M.R. Nidhi, D. Mondal, D. Ghosh, S.K. Nataraj, One-step green route synthesis of spinel ZnMn2O4 nanoparticles decorated on MWCNTs as a novel electrode material for supercapacitor, Mater. Sci. Eng. B 252(2020) 114481. [62] F.Y. Liu, Z.X. Wang, H.T. Zhang, L. Jin, X. Chu, B.N. Gu, H.C. Huang, W.Q. Yang, Nitrogen, oxygen and sulfur Co-doped hierarchical porous carbons toward high-performance supercapacitors by direct pyrolysis of kraft lignin, Carbon 149(2019) 105-116. [63] Y.B. Zhai, B.B. Xu, Y. Zhu, R.P. Qing, C. Peng, T.F. Wang, C.T. Li, G.M. Zeng, Nitrogen-doped porous carbon from Camellia oleifera shells with enhanced electrochemical performance, Mater. Sci. Eng., C 61(2016) 449-456. [64] X.J. He, N. Zhao, J.S. Qiu, N. Xiao, M.X. Yu, C. Yu, X.Y. Zhang, M.D. Zheng, Synthesis of hierarchical porous carbons for supercapacitors from coal tar pitch with nano-Fe2O3 as template and activation agent coupled with KOH activation, J. Mater. Chem. A 1(33) (2013) 9440-9448. [65] H.J. Wang, X.X. Sun, Z.H. Liu, Z.B. Lei, Creation of nanopores on graphene planes with MgO template for preparing high-performance supercapacitor electrodes, Nanoscale 6(12) (2014) 6577-6584. [66] F.T. Ran, X.B. Yang, X.Q. Xu, S.W. Li, Y.Y. Liu, L. Shao, Green activation of sustainable resources to synthesize nitrogen-doped oxygen-riched porous carbon nanosheets towards high-performance supercapacitor, Chem. Eng. J. 412(2021) 128673. [67] L.F. Chen, X.D. Zhang, H.W. Liang, M.G. Kong, Q.F. Guan, P. Chen, Z.Y. Wu, S.H. Yu, Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors, ACS Nano 6(8) (2012) 7092-7102. [68] L.P. Zheng, B. Tang, X.C. Dai, T. Xing, Y.H. Ouyang, Y. Wang, B.B. Chang, H.B. Shu, X.Y. Wang, High-yield synthesis of N-rich polymer-derived porous carbon with nanorod-like structure and ultrahigh N-doped content for high-performance supercapacitors, Chem. Eng. J. 399(2020) 125671. [69] C. Masarapu, H.F. Zeng, K.H. Hung, B.Q. Wei, Effect of temperature on the capacitance of carbon nanotube supercapacitors, ACS Nano 3(8) (2009) 2199-2206. |