[1] V. Kumar, N. Kaistha, Invariants for optimal operation of a reactor-separator-recycle process, J. Process. Contr. 82 (2019) 1-12. [2] M. Misra, H.H. Yue, S.J. Qin, C. Ling, Multivariate process monitoring and fault diagnosis by multi-scale PCA, Comput. Chem. Eng. 26 (9) (2002) 1281-1293. [3] H. S. Fogler, Elementos de Ingenier'Ia de Las Reacciones Qu' Imicas, fourth ed., Pearson Education, USA, 2008. [4] B. Betlem, B. Roffel, Process Dynamics and Control: Modeling for Control and Prediction, John Wiley and Sons, England, UK, 2009. [5] J. Chen, C.M. Liao, Dynamic process fault monitoring based on neural network and PCA, J. Process. Contr. 12 (2) (2002) 277-289. [6] H. Seki, Y.J. Naka, Optimizing control of CSTR/distillation column processes with one material recycle, Ind. Eng. Chem. Res. 47 (22) (2008) 8741-8753. [7] D. E. Seborg, T. F. Edger, D. A. Mellichamp, F. J. Doyle III, Process Dyn. Control, John Wiley and Sons, England, UK, 2016. [8] W.D. Tian, G.X. Zhang, X. Zhang, Y.X. Dong, PCA weight and Johnson transformation based alarm threshold optimization in chemical processes, Chin. J. Chem. Eng. 26 (8) (2018) 1653-1661. [9] R. Brooks, R. Thorpe, J. Wilson, A new method for defining and managing process alarms and for correcting process operation when an alarm occurs, J. Hazard Mater. 115 (1-3) (2004) 169-174. [10] D. H. Rothenberg, Alarm Management for Process Control: a best-practice Guide for Design, Implementation and Use of Industrial Alarm Systems. Momentum Press, New Jersey, USA, 2009. [11] EEMUA (Engineering Equipment and Materials Users’ Association), Alarm Systems: a Guide to Design, Management and Procurement, London: EEMUA Publication vol. 191, 2013. [12] M. Kano, S. Hasebe, I. Hashimoto, H. Ohno, A new multivariate statistical process monitoring method using principal component analysis, Comput. Chem. Eng. 25 (7-8) (2001) 1103-1113. [13] ISA, ISA-18.2:, Management of Alarm Systems for the Process Industries, International Society of Automation, Durham, NC, USA, 2009. [14] W.Y. Du, Y.W. Zhang, W. Zhou, Modified Non-Gaussian multivariate statistical process monitoring based on the Gaussian distribution transformation, J. Process. Contr. 85 (2020) 1-14. [15] X.Z. Zhu, D.L. Gao, C. Yang, C.J. Yang, A blast furnace fault monitoring algorithm with low false alarm rate: ensemble of greedy dynamic principal component analysis-gaussian mixture model, Chin. J. Chem. Eng. 57 (2023) 151-161. [16] L. Xie, J.M. Zhang, S.Q. Wang, Investigation of dynamic multivariate chemical process monitoring, Chin. J. Chem. Eng. 14 (5) (2006) 559-568. [17] Y. Yu, J.D. Wang, Z.J. Ouyang, Designing dynamic alarm limits and adjusting manipulated variables for multivariate systems, IEEE Trans. Ind. Electron. 67 (3) (2020) 2314-2325. [18] Y. Yu, J.D. Wang, Alarm monitoring for multivariate processes based on a convex-hull normal operating zone, IEEE Trans. Contr. Syst. Technol. 28 (6) (2020) 2649-2656. [19] R. Smith, Chemical Process: Design and Integration, John Wiley and Sons, England, UK, 2005. [20] M.Y. Wei, J.D. Wang, S. Gao, J. Li, X.K. Pang, An operating zone model for safety and efficiency monitoring of power generation units in thermal power plants, Contr. Eng. Pract. 153 (2024) 106101. [21] E. Alshbuki, Simulation of the optimum operating conditions for A propylene glycol production unit using aspen hysys software, J. Pure Appl. Sci. 22 (3) (2023) 120-123. [22] N. Olivier-Maget, F. Berdouzi, C. Murillo, N. Gabas, Deviation propagation along a propylene glycol process using dynamic simulation: an innovative contribution to the risk evaluation, J. Loss Prev. Process. Ind. 70 (2021) 104435. [23] N.H. El-Farra, A. Gani, P.D. Christofides, Fault-tolerant control of process systems using communication networks, AlChE. J. 51 (6) (2005) 1665-1682. [24] G. Towler, R. Sinnott, Chemical Engineering Design: Principles, Practice and Eco Nomics of Plant and Process Design, Butterworth-Heinemann, Oxford, UK, 2021. [25] Z. Wang, J.D. Wang, J.L. Hou, Multivariate alarm monitoring for non-convex normal operating zones based on search cones, IEEE Trans. Autom. Sci. Eng. 21 (1) (2024) 452-462. [26] A. Chan, W. D. Seider, Batch Manufacturing of Propylene Glycol, Department of Chemical and Biomedical Engineering University of Pennsylvania, Pennsylvania, USA, 2004. [27] K.K. Sharma, H. Krishna, Asymptotic sampling distribution of inverse coefficient-of-variation and its applications, IEEE Trans. Reliab. 43 (4) (1994) 630-633. [28] H. Pishro-Nik, Introduction to Probability, Statistics and Random Processes, Kappa Research LLC, USA, 2016. [29] D. C. Montgomery, G. C. Runger, Applied Statistics and Probability for Engineers, John Wiley and Sons, New Jersey, 2010. [30] J.D. Wang, J.J. Su, Y. Zhao, X.K. Pang, J. Li, Z.F. Bi, Performance assessment of primary frequency control responses for thermal power generation units using system identification techniques, Int. J. Electr. Power Energy Syst. 100 (2018) 81-90. [31] Z. Wang, J.D. Wang, J.D. Liu, Multivariate process monitoring for safe operation of condensers in thermal power plants based on normal operating zones, IEEE Trans. Contr. Syst. Technol. 32 (4) (2024) 1399-1409. [32] R.A. Bates, H.P. Wynn, E.S. Fraga, Feasible region approximation: a comparison of search cone and convex hull methods, Eng. Optim. 39 (5) (2007) 513-527. [33] V. Khalique, H. Kitagawa, T. Amagasa, BPF: a novel cluster boundary points detection method for static and streaming data, Knowl. Inf. Syst. 65 (7) (2023) 2991-3022. [34] P.S. Roy, M.R. Amin, Aspen-HYSYS simulation of natural gas processing plant, J. Chem. Eng. 26 (2012) 62-65. |