中国化学工程学报 ›› 2025, Vol. 86 ›› Issue (10): 222-232.DOI: 10.1016/j.cjche.2025.09.004
• Special Issue on Celebrating the 100th Anniversary of the School of Chemical Engineering and Technology of Tianjin University • 上一篇 下一篇
Shanyu Xie, Yuanpeng Wang, Qingbiao Li
收稿日期:2025-03-28
修回日期:2025-09-15
接受日期:2025-09-17
出版日期:2025-10-28
发布日期:2025-09-22
通讯作者:
Yuanpeng Wang,E-mail:wypp@xmu.edu.cn;Qingbiao Li,E-mail:kelqb@xmu.edu.cn
基金资助:Shanyu Xie, Yuanpeng Wang, Qingbiao Li
Received:2025-03-28
Revised:2025-09-15
Accepted:2025-09-17
Online:2025-10-28
Published:2025-09-22
Contact:
Yuanpeng Wang,E-mail:wypp@xmu.edu.cn;Qingbiao Li,E-mail:kelqb@xmu.edu.cn
Supported by:摘要: The use of microalgae to recover nitrogen and phosphorus from wastewater has garnered significant attention, positioning it as one of the most promising and sustainable strategies in modern wastewater treatment. While various photobioreactors (PBRs) configurations have been widely applied for microalgae cultivation, limited research has focused on optimizing PBR design specifically to enhance nitrogen and phosphorus removal efficiency. The high operational costs of wastewater treatment, combined with the inherent variability of microalgal growth, have prompted the search for advanced solutions that improve nitrogen and phosphorus removal while minimizing resource consumption and enabling predictive process control. Recently, the integration of PBR systems with artificial intelligence and machine learning (AI/ML) modeling has emerged as a transformative approach to enhancing nutrient removal, particularly for nitrogen and phosphorus. This study first summarizes existing PBR designs tailored for diverse applications, then outlines strategies for system enhancement through the optimization of mixing methods, construction materials, light intensity, and light source configuration. Furthermore, computational fluid dynamics (CFD) and AI/ML modeling are presented as tools to guide the structural design and operational optimization of microalgae-based nitrogen and phosphorus removal processes. Finally, future research directions and key challenges are discussed.
Shanyu Xie, Yuanpeng Wang, Qingbiao Li. Design and optimization of microalgae photobioreactors for treatment of nitrogen and phosphorus in wastewater[J]. 中国化学工程学报, 2025, 86(10): 222-232.
Shanyu Xie, Yuanpeng Wang, Qingbiao Li. Design and optimization of microalgae photobioreactors for treatment of nitrogen and phosphorus in wastewater[J]. Chinese Journal of Chemical Engineering, 2025, 86(10): 222-232.
| [1] M.D.T. Pham, X.T. Bui, T.K.Q. Vo, T.S. Dao, L.T. Le, T.D.H. Vo, K.P.H. Huynh, T.B. Nguyen, C. Lin, C. Visvanathan, Microalgae - bacteria based wastewater treatment systems: Granulation, influence factors and pollutants removal, Bioresour. Technol. 418 (2025) 131973. [2] L.Y. Wu, D.F. Xu, B. Li, D. Wu, H. Yang, Enhanced removal efficiency of nitrogen and phosphorus from swine wastewater using MgO modified pig manure biochar, J. Environ. Chem. Eng. 12 (1) (2024) 111793. [3] S. Rahimi, O. Modin, I. Mijakovic, Technologies for biological removal and recovery of nitrogen from wastewater, Biotechnol. Adv. 43 (2020) 107570. [4] L.M. Yang, Y.Y. Tu, H.Y. Li, W.L. Zhan, H.Q. Hu, Y. Wei, C.L. Chen, K.T. Liu, P.H. Shao, M. Li, G. Yang, X.B. Luo, Fluorine-rich supramolecular nano-container crosslinked hydrogel for lithium extraction with super-high capacity and extreme selectivity, Angew. Chem. Int. Ed 62 (38) (2023) e202308702. [5] L.M. Yang, Z. Gao, T. Liu, M.T. Huang, G.Z. Liu, Y.F. Feng, P.H. Shao, X.B. Luo, Direct electrochemical leaching method for high-purity lithium recovery from spent lithium batteries, Environ. Sci. Technol. 57 (11) (2023) 4591-4597. [6] L.M. Yang, Y.F. Feng, C.Q. Wang, D.F. Fang, G.P. Yi, Z. Gao, P.H. Shao, C.L. Liu, X.B. Luo, S.L. Luo, Closed-loop regeneration of battery-grade FePO4 from lithium extraction slag of spent Li-ion batteries via phosphoric acid mixture selective leaching, Chem. Eng. J. 431 (2022) 133232. [7] M. Wang, X.X. Ye, H.W. Bi, Z.B. Shen, Microalgae biofuels: illuminating the path to a sustainable future amidst challenges and opportunities, Biotechnol. Biofuels Bioprod. 17 (1) (2024) 10. [8] G. Penloglou, A. Pavlou, C. Kiparissides, Recent advancements in photo-bioreactors for microalgae cultivation: a brief overview, Processes 12 (6) (2024) 1104. [9] H. Yang, X. Xin, CO2 capture and lipid production performance of microalgae in the S-shaped photobioreactor under different culture modes, Enzyme Microb. Technol. 165 (2023) 110194. [10] R.C. Chin-On, M.J. Barbosa, R.H. Wijffels, M. Janssen, A novel V-shaped photobioreactor design for microalgae cultivation at low latitudes: Modelling biomass productivities of Chlorella sorokiniana on Bonaire, Chem. Eng. J. 449 (2022) 137793. [11] C.B. Zhu, X.Q. Zhai, Y.M. Xi, J.H. Wang, F.T. Kong, Y.P. Zhao, Z.Y. Chi, Progress on the development of floating photobioreactor for microalgae cultivation and its application potential, World J. Microbiol. Biotechnol. 35 (12) (2019) 190. [12] P. Sathinathan, H.M. Parab, R. Yusoff, S. Ibrahim, V. Vello, G.C. Ngoh, Photobioreactor design and parameters essential for algal cultivation using industrial wastewater: a review, Renew. Sustain. Energy Rev. 173 (2023) 113096. [13] M.N. Han, C.F. Zhang, F.H. Li, S.H. Ho, Data-driven analysis on immobilized microalgae system: New upgrading trends for microalgal wastewater treatment, Sci. Total Environ. 852 (2022) 158514. [14] B.N. Abbasi, Y.Q. Wu, Z.M. Luo, Exploring the impact of artificial intelligence on curriculum development in global higher education institutions, Educ. Inf. Technol. 30 (1) (2025) 547-581. [15] B. Szelag, J. Gonzalez-Camejo, A.L. Eusebi, R. Barat, A. Kiczko, F. Fatone, Multi-criteria analysis of the continuous operation of a membrane photobioreactor to treat sewage: Modeling and sensitivity analysis, Chem. Eng. J. 496 (2024) 154202. [16] X.Z. Chen, N. Kroell, M. Althaus, T. Pretz, R. Pomberger, K. Greiff, Enabling mechanical recycling of plastic bottles with shrink sleeves through near-infrared spectroscopy and machine learning algorithms, Resour. Conserv. Recycl. 188 (2023) 106719. [17] R.A. Garcia-Hernandez, J.M. Celaya-Padilla, H. Luna-Garcia, A. Garcia-Hernandez, C.E. Galvan-Tejada, J.I. Galvan-Tejada, H. Gamboa-Rosales, D. Rondon, K.O. Villalba-Condori, Emotional state detection using electroencephalogram signals: a genetic algorithm approach, Appl. Sci. 13 (11) (2023) 6394. [18] D. Susanna, R. Dhanapal, R. Mahalingam, V. Ramamurthy, Increasing productivity of Spirulina platensis in photobioreactors using artificial neural network modeling, Biotechnol. Bioeng. 116 (11) (2019) 2960-2970. [19] R.K. Oruganti, A.P. Biji, T. Lanuyanger, P.L. Show, M. Sriariyanun, V.K.K. Upadhyayula, V. Gadhamshetty, D. Bhattacharyya, Artificial intelligence and machine learning tools for high-performance microalgal wastewater treatment and algal biorefinery: a critical review, Sci. Total Environ. 876 (2023) 162797. [20] L. Delgadillo-Mirquez, F. Lopes, B. Taidi, D. Pareau, Nitrogen and phosphate removal from wastewater with a mixed microalgae and bacteria culture, Biotechnol. Rep. 11 (2016) 18-26. [21] G. Salbitani, S. Carfagna, Ammonium utilization in microalgae: a sustainable method for wastewater treatment, Sustainability 13 (2) (2021) 956. [22] Y.Y. Su, Revisiting carbon, nitrogen, and phosphorus metabolisms in microalgae for wastewater treatment, Sci. Total Environ. 762 (2021) 144590. [23] R. Bossa, M. Di Colandrea, G. Salbitani, S. Carfagna, Phosphorous utilization in microalgae: physiological aspects and applied implications, Plants 13 (15) (2024) 2127. [24] A. Beuckels, E. Smolders, K. Muylaert, Nitrogen availability influences phosphorus removal in microalgae-based wastewater treatment, Water Res. 77 (2015) 98-106. [25] S.M. Zakir Hossain, N. Sultana, M.E. Mohammed, S.A. Razzak, M.M. Hossain, Hybrid support vector regression and crow search algorithm for modeling and multiobjective optimization of microalgae-based wastewater treatment, J. Environ. Manag. 301 (2022) 113783. [26] J.M. Rozenberg, B.A. Sorokin, A.N. Mukhambetova, A.A. Emelianova, V.V. Kuzmin, O.Y. Belogurova-Ovchinnikova, D.V. Kuzmin, Recent advances and fundamentals of microalgae cultivation technology, Biotechnol. J. 19 (3) (2024) e2300725. [27] L.A. Castillo, P.J. Valades-Pelayo, H.J. Avila-Paredes, J.J. Cabello, A. Balbuena, Methodology for the fast direct estimation of spectral radiative transport properties in microalgae photobioreactors, Chem. Eng. J. 458 (2023) 141462. [28] E. Segredo-Morales, E. Gonzalez, C. Gonzalez-Martin, L. Vera, Novel vertical upflow multi-column configured membrane photobioreactor with a filtration control system for outdoor microalgae-bacteria cultivation, harvesting and wastewater reclamation, Chem. Eng. J. 482 (2024) 148799. [29] Y. Yang, M.M. Zheng, S. Qiao, J.T. Zhou, Z. Bi, X. Quan, Electro-Fenton improving fouling mitigation and microalgae harvesting performance in a novel membrane photobioreactor, Water Res. 210 (2022) 117955. [30] L. Zhao, J. Tang, Y.W. Xu, Y.F. Zhang, Z.H. Song, G.P. Fu, Z.L. Hu, A vertical-flow constructed wetland-microalgal membrane photobioreactor integrated system for treating high-pollution-load marine aquaculture wastewater: a lab-scale study, Sci. Total Environ. 919 (2024) 170465. [31] M. Ding, C. Wang, S. Woo Bae, H. Yong Ng, Enhanced nutrient removal and bioenergy production in microalgal photobioreactor following anaerobic membrane bioreactor for decarbonized wastewater treatment, Bioresour. Technol. 364 (2022) 128120. [32] F. Gao, Y.Y. Peng, C. Li, W. Cui, Z.H. Yang, G.M. Zeng, Coupled nutrient removal from secondary effluent and algal biomass production in membrane photobioreactor (MPBR): Effect of HRT and long-term operation, Chem. Eng. J. 335 (2018) 169-175. [33] Y.Y. Peng, F. Gao, H.L. Yang, H.W.J. Wu, C. Li, M.M. Lu, Z.Y. Yang, Simultaneous removal of nutrient and sulfonamides from marine aquaculture wastewater by concentrated and attached cultivation of Chlorella vulgaris in an algal biofilm membrane photobioreactor (BF-MPBR), Sci. Total Environ. 725 (2020) 138524. [34] M.R. Bilad, H.A. Arafat, I.F.J. Vankelecom, Membrane technology in microalgae cultivation and harvesting: a review, Biotechnol. Adv. 32 (7) (2014) 1283-1300. [35] M. Shafiquzzaman, M.M. Hasan, H. Haider, A.T. Ahmed, S.A. Razzak, Comparative evaluation of low-cost ceramic membrane and polymeric micro membrane in algal membrane photobioreactor for wastewater treatment, J. Environ. Manage. 345 (2023) 118894. [36] M.J. Zhang, L.S. Yao, E. Maleki, B.Q. Liao, H.J. Lin, Membrane technologies for microalgal cultivation and dewatering: Recent progress and challenges, Algal Res. 44 (2019) 101686. [37] W.S.K. Abudaqqa, C.M.R. Madhuranthakam, O. Chaalal, Algae-based membrane bioreactors: a mini review on their progress and processes for wastewater treatment, J. Water Process. Eng. 59 (2024) 104937. [38] J.J. Zhao, L.C. Peng, X.M. Ma, Innovative microalgae technologies for mariculture wastewater treatment: Single and combined microalgae treatment mechanisms, challenges and future prospects, Environ. Res. 266 (2025) 120560. [39] M.N. Han, C.F. Zhang, S.H. Ho, Immobilized microalgal system: an achievable idea for upgrading current microalgal wastewater treatment, Environ. Sci. Ecotechnol. 14 (2023) 100227. [40] M.R. Yu, L. Wang, P.Z. Feng, Z.M. Wang, S.N. Zhu, Treatment of mixed wastewater by vertical rotating microalgae-bacteria symbiotic biofilm reactor, Bioresour. Technol. 393 (2024) 130057. [41] S. Cao, F. Teng, T. Wang, X.X. Li, J.H. Lv, Z.H. Cai, Y. Tao, Characteristics of an immobilized microalgae membrane bioreactor (iMBR): Nutrient removal, microalgae growth, and membrane fouling under continuous operation, Algal Res. 51 (2020) 102072. [42] J. Shi, B. Podola, M. Melkonian, Application of a prototype-scale Twin-Layer photobioreactor for effective N and P removal from different process stages of municipal wastewater by immobilized microalgae, Bioresour. Technol. 154 (2014) 260-266. [43] T. Naumann, Z. Cebi, B. Podola, M. Melkonian, Growing microalgae as aquaculture feeds on twin-layers: a novel solid-state photobioreactor, J. Appl. Phycol. 25 (5) (2013) 1413-1420. [44] Q. Zhang, C.X. Liu, Y.B. Li, Z.G. Yu, Z.H. Chen, T. Ye, X. Wang, Z.Q. Hu, S.M. Liu, B. Xiao, S.P. Jin, Cultivation of algal biofilm using different lignocellulosic materials as carriers, Biotechnol. Biofuels 10 (2017) 115. [45] M. Gross, W. Henry, C. Michael, Z.Y. Wen, Development of a rotating algal biofilm growth system for attached microalgae growth with in situ biomass harvest, Bioresour. Technol. 150 (2013) 195-201. [46] M.M.R. Talukder, P. Das, J.C. Wu, Immobilization of microalgae on exogenous fungal mycelium: a promising separation method to harvest both marine and freshwater microalgae, Biochem. Eng. J. 91 (2014) 53-57. [47] Y.H. Sun, Y. Huang, Q. Liao, Q. Fu, X. Zhu, Enhancement of microalgae production by embedding hollow light guides to a flat-plate photobioreactor, Bioresour. Technol. 207 (2016) 31-38. [48] S.Z. Xue, Q.H. Zhang, X. Wu, C.H. Yan, W. Cong, A novel photobioreactor structure using optical fibers as inner light source to fulfill flashing light effects of microalgae, Bioresour. Technol. 138 (2013) 141-147. [49] S.M. Zakir Hossain, N. Sultana, M.S. Jassim, G. Coskuner, L.M. Hazin, S.A. Razzak, M.M. Hossain, Soft-computing modeling and multiresponse optimization for nutrient removal process from municipal wastewater using microalgae, J. Water Process. Eng. 45 (2022) 102490. [50] Q. Liao, L. Li, R. Chen, X. Zhu, A novel photobioreactor generating the light/dark cycle to improve microalgae cultivation, Bioresour. Technol. 161 (2014) 186-191. [51] L. Borella, E. Sforza, A. Bertucco, An internally LED illuminated photobioreactor to increase energy conversion efficiency: Design and operation, Energy Convers. Manag. 270 (2022) 116224. [52] J.P. Diaz, C. Inostroza, F.G. Acien Fernandez, Fibonacci-type tubular photobioreactor for the production of microalgae, Process. Biochem. 86 (2019) 1-8. [53] W.C. Cheng, J.K. Huang, J.P. Chen, Computational fluid dynamics simulation of mixing characteristics and light regime in tubular photobioreactors with novel static mixers, J. Chem. Technol. Biotechnol. 91 (2) (2016) 327-335. [54] J.C. Xu, J. Cheng, K. Xin, J.H. Xu, W.J. Yang, Strengthening flash light effect with a pond-tubular hybrid photobioreactor to improve microalgal biomass yield, Bioresour. Technol. 318 (2020) 124079. [55] C.H. Shu, C.C. Tsai, W.H. Liao, K.Y. Chen, H.C. Huang, Effects of light quality on the accumulation of oil in a mixed culture of Chlorella sp. and Saccharomyces cerevisiae, J. Chem. Technol. Biotechnol. 87 (5) (2012) 601-607. [56] J. Wang, Y.X. Wang, Z.Q. Gu, H.J. Mou, H. Sun, Stimulating carbon and nitrogen metabolism of Chlorella pyrenoidosa to treat aquaculture wastewater and produce high-quality protein in plate photobioreactors, Sci. Total Environ. 878 (2023) 163061. [57] S. Zhang, T.H. Kim, T.H. Han, S.J. Hwang, Influence of light conditions of a mixture of red and blue light sources on nitrogen and phosphorus removal in advanced wastewater treatment using Scenedesmus dimorphus, Biotechnol. Bioprocess Eng. 20 (4) (2015) 760-765. [58] T.H. Kim, Y. Lee, S.H. Han, S.J. Hwang, The effects of wavelength and wavelength mixing ratios on microalgae growth and nitrogen, phosphorus removal using Scenedesmus sp. for wastewater treatment, Bioresour. Technol. 130 (2013) 75-80. [59] B.D. Fernandes, G.M. Dragone, J.A. Teixeira, A.A. Vicente, Light regime characterization in an airlift photobioreactor for production of microalgae with high starch content, Appl. Biochem. Biotechnol. 161 (1-8) (2010) 218-226. [60] L. Borella, E. Sforza, A. Bertucco, Effect of residence time in continuous photobioreactor on mass and energy balance of microalgal protein production, N. Biotechnol. 64 (2021) 46-53. [61] C.Y. Chen, Y.H. Chang, H.Y. Chang, Outdoor cultivation of Chlorella vulgaris FSP-E in vertical tubular-type photobioreactors for microalgal protein production, Algal Res. 13 (2016) 264-270. [62] B.Y. Gao, J. Liu, C.W. Zhang, D.B. Van de Waal, Biological stoichiometry of oleaginous microalgal lipid synthesis: The role of N: P supply ratios and growth rate on microalgal elemental and biochemical composition, Algal Res. 32 (2018) 353-361. [63] J.L. Zhou, J.N. Li, D. Zhou, J.M. Wang, Y.H. Ye, C. Zhang, F. Gao, Dialysis bag-microalgae photobioreactor: novel strategy for enhanced bioresource production and wastewater purification, J. Environ. Manage. 354 (2024) 120439. [64] A. Abdel-Baset, I.A. Matter, M.A. Ali, Enhanced Scenedesmus obliquus cultivation in plastic-type flat panel photobioreactor for biodiesel production, Sustainability 16 (8) (2024) 3148. [65] N.K.Q. Nguyen, X.T. Bui, T.S. Dao, M.D.T. Pham, H.H. Ngo, C. Lin, K.A. Lin, P.D. Nguyen, K.P.H. Huynh, T.K.Q. Vo, V.T. Tra, T.S. Le, Influence of hydrodynamic shear stress on activated algae granulation process for wastewater treatment, Environ. Technol. Innov. 33 (2024) 103494. [66] X. Gao, B. Kong, R.D. Vigil, Multiphysics simulation of algal growth in an airlift photobioreactor: Effects of fluid mixing and shear stress, Bioresour. Technol. 251 (2018) 75-83. [67] M.H.A. Michels, A.J. van der Goot, M.H. Vermue, R.H. Wijffels, Cultivation of shear stress sensitive and tolerant microalgal species in a tubular photobioreactor equipped with a centrifugal pump, J. Appl. Phycol. 28 (1) (2016) 53-62. [68] Y. Wu, Y.Q. He, T. Zhao, Y. Zhao, Z. Yu, H.Y. Pei, Enhanced production of microalgal metabolites through aeration coupled with stirring, Sustainability 16 (20) (2024) 9001. [69] C.B. Zhu, Y. Ji, X. Du, F.T. Kong, Z.Y. Chi, Y.P. Zhao, A smart and precise mixing strategy for efficient and cost-effective microalgae production in open ponds, Sci. Total Environ. 852 (2022) 158515. [70] B. Aslanbay Guler, I. Deniz, Z. Demirel, S.S. Oncel, E. Imamoglu, Computational fluid dynamics modelling of stirred tank photobioreactor for Haematococcus pluvialis production: Hydrodynamics and mixing conditions, Algal Res. 47 (2020) 101854. [71] Y.L. Luo, P. Le-Clech, R.K. Henderson, Simultaneous microalgae cultivation and wastewater treatment in submerged membrane photobioreactors: a review, Algal Res. 24 (2017) 425-437. [72] P. Yaqoubnejad, H.A. Rad, M. Taghavijeloudar, Development a novel hexagonal airlift flat plate photobioreactor for the improvement of microalgae growth that simultaneously enhance CO2 bio-fixation and wastewater treatment, J. Environ. Manage. 298 (2021) 113482. [73] J.C. Xu, J. Cheng, K. Xin, J.H. Xu, W.J. Yang, Developing a spiral-ascending CO2 dissolver to enhance CO2 mass transfer in a horizontal tubular photobioreactor for improved microalgal growth, ACS Sustainable Chem. Eng. 8 (51) (2020) 18926-18935. [74] Z.G. Yang, H.Y. Pei, F. Han, Y.T. Wang, Q.J. Hou, Y. Chen, Effects of air bubble size on algal growth rate and lipid accumulation using fine-pore diffuser photobioreactors, Algal Res. 32 (2018) 293-299. [75] J. Cheng, Y.M. Song, Y. Miao, W.B. Guo, Y.G. Wang, X. Li, W.J. Yang, J.H. Zhou, Three-stage shear-serrated aerator broke CO2 bubbles to promote mass transfer and microalgal growth, ACS Sustainable Chem. Eng. 8 (2) (2020) 939-947. [76] J. Cheng, X. Lai, Q. Ye, W.B. Guo, J.C. Xu, W.B. Ren, J.H. Zhou, A novel jet-aerated tangential swirling-flow plate photobioreactor generates microbubbles that enhance mass transfer and improve microalgal growth, Bioresour. Technol. 288 (2019) 121531. [77] J.L. Wang, C. Hu, W.L. He, F.Z. Du, N.Z. Jiao, J.H. Liu, C.B. Zhu, Novel thin-layer fountain photobioreactors for the high-density cultivation of Spirulina sp, ACS Sustainable Chem. Eng. 11 (47) (2023) 16818-16827. [78] Z.B. Yang, J. Cheng, W.J. Yang, J.H. Zhou, K.F. Cen, Developing a water-circulating column photobioreactor for microalgal growth with low energy consumption, Bioresour. Technol. 221 (2016) 492-497. [79] P. Li, Y.J. Luo, J.S. Tian, Y.W. Cheng, S.J. Wang, X. An, J.X. Zheng, H. Yan, H.T. Duan, J. Zhang, Z.C. Pan, Y.W. Chen, R. Wang, H.Z. Zhou, Z.Q. Wang, Z.L. Tan, X. Li, Outdoor tubular photobioreactor microalgae-microorganisms biofilm treatment of municipal wastewater: Enhanced heterotrophic assimilation and synergistic aerobic denitrogenation, Bioresour. Technol. 408 (2024) 131151. [80] V. Belohlav, E. Uggetti, J. Garcia, T. Jirout, L. Kratky, R. Diez-Montero, Assessment of hydrodynamics based on Computational Fluid Dynamics to optimize the operation of hybrid tubular photobioreactors, J. Environ. Chem. Eng. 9 (5) (2021) 105768. [81] J.W. Fu, H.Y. Peng, Y. Huang, A. Xia, X.Q. Zhu, X. Zhu, Q. Liao, Integrating wind-driven agitating blade into a floating photobioreactor to enhance fluid mixing and microalgae growth, Bioresour. Technol. 372 (2023) 128660. [82] J.J. Huang, G. Bunjamin, E.S. Teo, D.B. Ng, Y.K. Lee, An enclosed rotating floating photobioreactor (RFP) powered by flowing water for mass cultivation of photosynthetic microalgae, Biotechnol. Biofuels 9 (2016) 218. [83] Y.J. Zhang, C.H. Wang, D.F. Wu, X.T. Guo, L. Yu, M. Zhang, Probing the effect of straight chain fatty acids on the properties of lead-containing plexiglass, React. Chem. \& Eng., (2021). [84] A.K. Ahangar, P. Yaqoubnejad, K. Divsalar, S. Mousavi, M. Taghavijeloudar, Design a novel internally illuminated mirror photobioreactor to improve microalgae production through homogeneous light distribution, Bioresour. Technol. 387 (2023) 129577. [85] I.S. Yang, E.S. Salama, J.O. Kim, S.P. Govindwar, M.B. Kurade, M.S. Lee, H.S. Roh, B.H. Jeon, Cultivation and harvesting of microalgae in photobioreactor for biodiesel production and simultaneous nutrient removal, Energy Convers. Manag. 117 (2016) 54-62. [86] O. Zeriouh, J. V. Reinoso-Moreno, L. Lopez-Rosales, M. C. Ceron-Garcia, A. Sanchez Miron, F. Garcia-Camacho, E. Molina-Grima, Assessment of a photobioreactor-coupled modified Robbins device to compare the adhesion of Nannochloropsis gaditana on different materials, Algal Res. 37 (2019) 277-287. [87] X. Chen, Z.P. Li, N. He, Y.M. Zheng, H. Li, H.T. Wang, Y.P. Wang, Y.H. Lu, Q.B. Li, Y.J. Peng, Nitrogen and phosphorus removal from anaerobically digested wastewater by microalgae cultured in a novel membrane photobioreactor, Biotechnol. Biofuels 11 (2018) 190. [88] S.L. Lu, G.Y. Chu, C. Gao, Y.G. Zhao, W.Z. Chen, C.J. Jin, Q.Z. Wang, M.C. Gao, Effect of light intensity on nitrogen transformation, enzymatic activity, antioxidant system and transcriptional response of Chlorella pyrenoidosa during treating mariculture wastewater, Bioresour. Technol. 397 (2024) 130465. [89] H. Shao, Y.H. Sun, X.X. Jiang, J. Hu, C.L. Guo, C.J. Lu, F.H. Guo, C.H. Sun, Y.J. Wang, C.C. Dai, Towards biomass production and wastewater treatment by enhancing the microalgae-based nutrients recovery from liquid digestate in an innovative photobioreactor integrated with dialysis bag, J. Environ. Manage. 317 (2022) 115337. [90] X.S. Tian, X.A. Lin, Q. Xie, J.P. Liu, L.Z. Luo, Effects of temperature and light on microalgal growth and nutrient removal in turtle aquaculture wastewater, Biology 13 (11) (2024) 901. [91] G. Luzi, C. McHardy, Modeling and simulation of photobioreactors with computational fluid dynamics: a comprehensive review, Energies 15 (11) (2022) 3966. [92] W.J. Gu, E. Theau, A.W. Anderson, D.F. Fletcher, J.M. Kavanagh, D.D. McClure, A modelling workflow for quantification of photobioreactor performance, Chem. Eng. J. 477 (2023) 147032. [93] Y.S. MSc, C.A. Gomez-Perez PhD, J.P.A.R C. E, J.E. PhD, Static mixer proposal for tubular photobioreactors to reduce mixing energy consumption and enhance light-dark cycles, J. Chem. Technol. Biotechnol. 96 (1) (2021) 113-124. [94] D.S. Wagner, B. Valverde-Perez, M. Saeboe, M. Bregua de la Sotilla, J. Van Wagenen, B.F. Smets, B.G. Plosz, Towards a consensus-based biokinetic model for green microalgae - The ASM-A, Water Res. 103 (2016) 485-499. [95] C.E. de Farias Silva, R.B. de Oliveira Cerqueira, C.F. de Lima Neto, F.P. de Andrade, F. de Oliveira Carvalho, J. Tonholo, Developing a kinetic model to describe wastewater treatment by microalgae based on simultaneous carbon, nitrogen and phosphorous removal, J. Environ. Chem. Eng. 8 (3) (2020) 103792. [96] S. Shahhoseyni, L. Greco, A. Sivaram, S.S. Mansouri, A reduced-order hybrid model for photobioreactor performance and biomass prediction, Algal Res. 84 (2024) 103750. [97] E. Todisco, J. Louveau, C. Thobie, E. Dechandol, L. Herve, S. Durecu, M. Titica, J. Pruvost, A dynamic model for temperature prediction in a facade-integrated photobioreactor, Chem. Eng. Res. Des. 181 (2022) 371-383. [98] V. Ganthavee, A.P. Trzcinski, Artificial intelligence and machine learning for the optimization of pharmaceutical wastewater treatment systems: a review, Environ. Chem. Lett. 22 (5) (2024) 2293-2318. [99] E. Imamoglu, Artificial intelligence and/or machine learning algorithms in microalgae bioprocesses, Bioengineering 11 (11) (2024) 1143. [100] N.A. Ahmad Latiffi, R.M.S.R. Mohamed, A. Al-Gheethi, R.M. Tajuddin, M.M. Al-Shaibani, D.N. Vo, P.F. Rupani, Nutrients elimination from meat processing wastewater using Scenedesmus sp.; optimizations; artificial neural network and kinetics models, Environ. Technol. Innov. 26 (2022) 102535. [101] D. Saboe, H. Ghasemi, M.M. Gao, M. Samardzic, K.D. Hristovski, D. Boscovic, S.R. Burge, R.G. Burge, D.A. Hoffman, Real-time monitoring and prediction of water quality parameters and algae concentrations using microbial potentiometric sensor signals and machine learning tools, Sci. Total Environ. 764 (2021) 142876. [102] S.A. Razzak, M.S. Alam, S.M. Zakir Hossain, S.M. Rahman, Tree-based machine learning for predicting Neochloris oleoabundans biomass growth and biological nutrient removal from tertiary municipal wastewater, Chem. Eng. Res. Des. 210 (2024) 614-624. [103] S. Cheng, X. Liu, C. Pastore, L. di Bitonto, A. Li, Low-carbon wastewater treatment and resource recovery of recirculating aquaculture system by immobilized chlorella vulgaris based on machine learning optimization, Bioresour. Technol. 408 (2024) 131208. [104] E.M. Salgado, A.F. Esteves, A.L. Goncalves, J.C.M. Pires, Microalgal cultures for the remediation of wastewaters with different nitrogen to phosphorus ratios: Process modelling using artificial neural networks, Environ. Res. 231 (Pt 1) (2023) 116076. [105] R. Huang, Z.Q. Liu, B.Y. Yan, Y.Q. Li, H.R. Li, D.M. Liu, P. Wang, F.Y. Cui, W.X. Shi, Layer-by-layer assembly of high negatively charged polycarbonate membranes with robust antifouling property for microalgae harvesting, J. Membr. Sci. 595 (2020) 117488. [106] P. Sattayawat, I. Yunus, N. Noirungsee, N. Mukjang, W. Pathom-aree, J. Pekkoh, C. Pumas, Synthetic biology-based approaches for microalgal bio-removal of heavy metals from wastewater effluents, Frontiers in Environmental Science, (2021) 778260. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001993号 
