[1] X.W. Li, R. Zhao, S. Li, Y.T. Wang, X.N. Wang, W.Y. Yang, M.C. Yang, W.H. Xiao, S.H. Yang, X.Q. Lin, X.J. Zheng, X.J. Ma, L. Zhao, W. Xiao, L.M. Cao, Global reprogramming of xylose metabolism in Saccharomyces cerevisiae efficiently produces ethanol from lignocellulose hydrolysates, Ind. Crops Prod. 179 (2022) 114666. [2] J.T. Cunha, P.O. Soares, A. Romani, J.M. Thevelein, L. Domingues, Xylose fermentation efficiency of industrial Saccharomyces cerevisiae yeast with separate or combined xylose reductase/xylitol dehydrogenase and xylose isomerase pathways, Biotechnol. Biofuels 12 (2019) 20. [3] P. Promdonkoy, W. Mhuantong, V. Champreda, S. Tanapongpipat, W. Runguphan, Improvement in D-xylose utilization and isobutanol production in S. cerevisiae by adaptive laboratory evolution and rational engineering, J. Ind. Microbiol. Biotechnol. 47 (6-7) (2020) 497-510. [4] F. Li, W.X. Bai, Y. Zhang, Z.J. Zhang, D.G. Zhang, N.D. Shen, J.W. Yuan, G.M. Zhao, X.Y. Wang, Construction of an economical xylose-utilizing Saccharomyces cerevisiae and its ethanol fermentation, FEMS Yeast Res. 24 (2024) foae001. [5] K.L. Traff, R.R. Otero Cordero, W.H. van Zyl, B. Hahn-Hagerdal, Deletion of the GRE3 aldose reductase gene and its influence on xylose metabolism in recombinant strains of Saccharomyces cerevisiae expressing the xylA and XKS1 genes, Appl. Environ. Microbiol. 67 (12) (2001) 5668-5674. [6] D. Brat, E. Boles, B. Wiedemann, Functional expression of a bacterial xylose isomerase in Saccharomyces cerevisiae, Appl. Environ. Microbiol. 75 (8) (2009) 2304-2311. [7] D.P. Procopio, E. Kendrick, R. Goldbeck, A.R.L. Damasio, T.T. Franco, D.J. Leak, Y.S. Jin, T.O. Basso, Xylo-oligosaccharide utilization by engineered Saccharomyces cerevisiae to produce ethanol, Front. Bioeng. Biotechnol. 10 (2022) 825981. [8] A. Reider Apel, M. Ouellet, H. Szmidt-Middleton, J.D. Keasling, A. Mukhopadhyay, Evolved hexose transporter enhances xylose uptake and glucose/xylose co-utilization in Saccharomyces cerevisiae, Sci. Rep. 6 (2016) 19512. [9] C. Du, Y.M. Li, R.J. Xiang, W.J. Yuan, Formate dehydrogenase improves the resistance to formic acid and acetic acid simultaneously in Saccharomyces cerevisiae, Int. J. Mol. Sci. 23 (6) (2022) 3406. [10] O. Rehman, A. Shahid, C.G. Liu, J.R. Xu, M.R. Javed, N.H. Eid, M. Gull, M. Nawaz, M.A. Mehmood, Optimization of low-temperature energy-efficient pretreatment for enhanced saccharification and fermentation of Conocarpus erectus leaves to produce ethanol using Saccharomyces cerevisiae, Biomass Convers. Biorefin. 10 (4) (2020) 1269-1278. [11] J.K. Ko, T. Enkh-Amgalan, G. Gong, Y. Um, S.M. Lee, Improved bioconversion of lignocellulosic biomass by Saccharomyces cerevisiae engineered for tolerance to acetic acid, GCB Bioenergy 12 (1) (2020) 90-100. [12] J. Zha, M.H. Shen, M.L. Hu, H. Song, Y.J. Yuan, Enhanced expression of genes involved in initial xylose metabolism and the oxidative pentose phosphate pathway in the improved xylose-utilizing Saccharomyces cerevisiae through evolutionary engineering, J. Ind. Microbiol. Biotechnol. 41 (1) (2014) 27-39. [13] T.P. Basso, D.P. Procopio, T.H.C. Petrin, T.G. Giacon, Y.S. Jin, T.O. Basso, L.C. Basso, Engineering xylose fermentation in an industrial yeast: continuous cultivation as a tool for selecting improved strains, Lett. Appl. Microbiol. 76 (7) (2023) ovad077. [14] O. Rehman, Y.D. Wu, Q. Zhang, J. Guo, C.H. Sun, H.P. Gao, Y.Q. Xu, R. Xu, A. Shahid, C. Xue, Acetic acid- and furfural-based adaptive evolution of Saccharomyces cerevisiae strains for improving stress tolerance and lignocellulosic ethanol production, Chin. J. Chem. Eng. 72 (2024) 26-33. [15] M. Xiao, L. Wang, Y.D. Wu, C. Cheng, L.J. Chen, H.Z. Chen, C. Xue, Hybrid dilute sulfuric acid and aqueous ammonia pretreatment for improving butanol production from corn stover with reduced wastewater generation, Bioresour. Technol. 278 (2019) 460-463. [16] C. Xue, X.T. Zhang, J.F. Wang, M. Xiao, L.J. Chen, F.W. Bai, The advanced strategy for enhancing biobutanol production and high-efficient product recovery with reduced wastewater generation, Biotechnol. Biofuels 10 (2017) 148. [17] A. Romani, F. Pereira, B. Johansson, L. Domingues, Metabolic engineering of Saccharomyces cerevisiae ethanol strains PE-2 and CAT-1 for efficient lignocellulosic fermentation, Bioresour. Technol. 179 (2015) 150-158. [18] A. Matsushika, A. Nagashima, T. Goshima, T. Hoshino, Fermentation of xylose causes inefficient metabolic state due to carbon/energy starvation and reduced glycolytic flux in recombinant industrial Saccharomyces cerevisiae, PLoS One 8 (7) (2013) e69005. [19] M.T. Huang, Z.C. Jin, H. Ni, P.N. Zhang, H.N. Li, J.S. Liu, C.C. Weng, Z.B. Jiang, Engineering the xylose metabolism of Saccharomyces cerevisiae for ethanol and single cell protein bioconversion, Biomass Bioenergy 190 (2024) 107372. [20] L.V. Dos Santos, T. Neitzel, C.S. Lima, L.M. de Carvalho, T.B. de Lima, J.L. Ienczak, T.L.R. Correa, G.A.G. Pereira, Engineering cellular redox homeostasis to optimize ethanol production in xylose-fermenting Saccharomyces cerevisiae strains, Microbiol. Res. 290 (2025) 127955. [21] J. Konishi, A. Fukuda, K. Mutaguchi, T. Uemura, Xylose fermentation by Saccharomyces cerevisiae using endogenous xylose-assimilating genes, Biotechnol. Lett. 37 (8) (2015) 1623-1630. [22] W.C. Li, J.Q. Zhu, X. Zhao, L. Qin, T. Xu, X. Zhou, X. Li, B.Z. Li, Y.J. Yuan, Improving co-fermentation of glucose and xylose by adaptive evolution of engineering xylose-fermenting Saccharomyces cerevisiae and different fermentation strategies, Renew. Energy 139 (2019) 1176-1183. [23] Y.S. Tan, L. Wang, Y.Y. Wang, Q.E. He, Z.H. Liu, Z. Zhu, K. Song, B.Z. Li, Y.J. Yuan, Protein acetylation regulates xylose metabolism during adaptation of Saccharomyces cerevisiae, Biotechnol. Biofuels 14 (1) (2021) 241. [24] A. Matsushika, T. Goshima, T. Hoshino, Transcription analysis of recombinant industrial and laboratory Saccharomyces cerevisiae strains reveals the molecular basis for fermentation of glucose and xylose, Microb. Cell Fact. 13 (2014) 16. [25] C.F. Wahlbom, W.H. van Zyl, L.J. Jonsson, B. Hahn-Hagerdal, R.R.C. Otero, Generation of the improved recombinant xylose-utilizing Saccharomyces cerevisiae TMB 3400 by random mutagenesis and physiological comparison with Pichia stipitis CBS 6054, FEMS Yeast Res. 3 (3) (2003) 319-326. [26] D. Jeong, E.J. Oh, J.K. Ko, J.O. Nam, H.S. Park, Y.S. Jin, E.J. Lee, S.R. Kim, Metabolic engineering considerations for the heterologous expression of xylose-catabolic pathways in Saccharomyces cerevisiae, PLoS One 15 (7) (2020) e0236294. [27] C.Y. Xie, B.X. Yang, Y.J. Wu, Z.Y. Xia, M. Gou, Z.Y. Sun, Y.Q. Tang, Construction of industrial xylose-fermenting Saccharomyces cerevisiae strains through combined approaches, Process. Biochem. 96 (2020) 80-89. [28] H. Zhou, J.S. Cheng, B.L. Wang, G.R. Fink, G. Stephanopoulos, Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae, Metab. Eng. 14 (6) (2012) 611-622. [29] W.Y. Zeng, Y.Q. Tang, M. Gou, Z.Y. Sun, Z.Y. Xia, K. Kida, Comparative transcriptomes reveal novel evolutionary strategies adopted by Saccharomyces cerevisiae with improved xylose utilization capability, Appl. Microbiol. Biotechnol. 101 (4) (2017) 1753-1767. [30] M. Sonderegger, M. Jeppsson, C. Larsson, M.F. Gorwa-Grauslund, E. Boles, L. Olsson, I. Spencer-Martins, B. Hahn-Hagerdal, U. Sauer, Fermentation performance of engineered and evolved xylose-fermenting Saccharomyces cerevisiae strains, Biotechnol. Bioeng. 87 (1) (2004) 90-98. [31] J.K. Ko, Y. Um, H.M. Woo, K.H. Kim, S.M. Lee, Ethanol production from lignocellulosic hydrolysates using engineered Saccharomyces cerevisiae harboring xylose isomerase-based pathway, Bioresour. Technol. 209 (2016) 290-296. [32] S.M. Lee, T. Jellison, H.S. Alper, Systematic and evolutionary engineering of a xylose isomerase-based pathway in Saccharomyces cerevisiae for efficient conversion yields, Biotechnol. Biofuels 7 (1) (2014) 122. [33] I. Papapetridis, M.D. Verhoeven, S.J. Wiersma, M. Goudriaan, A.J.A. van Maris, J.T. Pronk, Laboratory evolution for forced glucose-xylose co-consumption enables identification of mutations that improve mixed-sugar fermentation by xylose-fermenting Saccharomyces cerevisiae, FEMS Yeast Res. 18 (6) (2018) foy056. [34] D.D. Lopes, C.A. Rosa, R.E. Hector, B.S. Dien, J.A. Mertens, M.A.Z. Ayub, Influence of genetic background of engineered xylose-fermenting industrial Saccharomyces cerevisiae strains for ethanol production from lignocellulosic hydrolysates, J. Ind. Microbiol. Biotechnol. 44 (11) (2017) 1575-1588. [35] M. van Dijk, B. Erdei, M. Galbe, Y. Nygard, L. Olsson, Strain-dependent variance in short-term adaptation effects of two xylose-fermenting strains of Saccharomyces cerevisiae, Bioresour. Technol. 292 (2019) 121922. [36] F. Nielsen, E. Tomas-Pejo, L. Olsson, O. Wallberg, Short-term adaptation during propagation improves the performance of xylose-fermenting Saccharomyces cerevisiae in simultaneous saccharification and co-fermentation, Biotechnol. Biofuels 8 (2015) 219. [37] B.A. Brandt, M.P. Garcia-Aparicio, J.F. Gorgens, W.H. van Zyl, Adaptation of Saccharomyces cerevisiae in a concentrated spent sulphite liquor waste stream for increased inhibitor resistance, Appl. Microbiol. Biotechnol. 106 (1) (2022) 455-468. [38] J. Smith, E. van Rensburg, J.F. Gorgens, Simultaneously improving xylose fermentation and tolerance to lignocellulosic inhibitors through evolutionary engineering of recombinant Saccharomyces cerevisiae harbouring xylose isomerase, BMC Biotechnol. 14 (2014) 41. [39] M.M. Demeke, H. Dietz, Y. Li, M.R. Foulquie-Moreno, S. Mutturi, S. Deprez, T. Den Abt, B.M. Bonini, G. Liden, F. Dumortier, A. Verplaetse, E. Boles, J.M. Thevelein, Development of a D-xylose fermenting and inhibitor tolerant industrial Saccharomyces cerevisiae strain with high performance in lignocellulose hydrolysates using metabolic and evolutionary engineering, Biotechnol. Biofuels 6 (1) (2013) 89. |